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This textbook is structured to prioritize the concepts and illustrations covered in the
Continuum Mechanics course; the formatting of these various constitutive elements is
detailed below. In addition, a table of contents and an index provide direct access to
the information.

HOW TO USE THIS TEXTBOOK?

The body of the text allows a reasoned and logical presentation of the different concepts
covered in the Continuum Mechanics course, as well as the basic reasoning to solve the problems
encountered: it is then the recommended reading level for the comprehension of the course.

Definition. The definitions describe the concepts that make it possible to pose a problem in
Continuum Mechanics, while introducing the vocabulary adapted to this field.

Summary 0.1 — Principle and disclaimer. The summaries synthesize the basic elements
necessary for understanding and solving the problems encountered in Continuum Mechanics;
alone, these basics are insufficient for comprehensive knowledge on the concepts covered this
year.

■ Example 0.1 — Illustrations and applications. The examples serve as practical support for understanding
the concepts and information presented in the course, and illustrate the use of Continuum Mechanics tools in various
fields of application; they can be skipped in the first reading. ■

! The exclamation marks indicate the classic mistakes or confusions to be avoided at all costs;
they contribute to a more detailed understanding of the concepts covered.

R The remarks allow us to give further references and to go into greater depth into the framework set out
in this document, and give



We have chosen to use, in this textbook, a unified formalism based on the intrinsic
representation of vectors and matrices, which is reflected in the following notations.

WHICH NOTATIONS?

Vectors

The space vectors are noted in boldface: a, of scalar components an in a space vector basis (i1, i2, i3).
Among the main notations, we will then use:

• for the scalar product of two vectors a and b :
〈

a,b
〉
;

• for the norm of a vector a : ∥a∥;
• for the vector product of two vectors a and b : a∧b.

More details on the mathematical definitions of these concepts can be found in Appendix A.1.1.

Points

The points in space are considered through their position vectors: the associated position vector xA

is thus associated with point A. This implies, for example, that:
• the vector that connects a point A to a point B is written as xB −xA;
• the origin O of the space verifies xO = 0;
• the middle point I of the segment [AB] is such that xI =

(
xA +xB

)
/2.

For simplicity, we will note x the position vector associated with the current point M.

Matrices (or second-order tensors)

The matrices are noted with blackboard bold letters: A, of scalar components Amn in a space vector
basis (i1, i2, i3). We then note:

• the product b of a matrix A by a vector a: b = Aa;
• the product C of two matrices A and B: C= AB;
• the transpose of a matrix A: AT;
• the inverse of a matrix A: A−1.

More details on the mathematical definitions of these concepts can be found in Appendix A.2.1.
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Foreword

The purpose of Continuum Mechanics is to predict the movements of a material
medium, be it solid or fluid, and to relate these movements to the origins that cause
them; it is, therefore, necessary to understand in depth the deformation mechanisms
of these media and to understand the stresses that are developing within them. In
this end, the approach is at the macroscopic scale, without necessarily establishing
a quantitative link with the nature of atomic or molecular forces: we then define an
equivalent continuous medium, the “form” of which is mathematical, allowing the
use of mathematical analysis tools such as differential and integral calculation, which
enable partial derivative equations to be solved exactly or approximately.

The question then arises as to how this equivalent continuous medium can be
defined; if we take the example of a physical quantity such as density, in the case of a
medium consisting of a set of beads in contact with each other (as in the image below),
we notice that this quantity typically evolves according to the medium’s observation
scale:

• below a certain specimen size (i.e., at the “microscopic” scale), the organisation
of matter is heterogeneous (or even discrete, as in the example considered), hence
we observe a strong variation of the average density from one sample to another,
as if at random;

• from a certain specimen size larger than the order of magnitude of the hetero-
geneities’ size, the average density no longer changes much over short distances;
we are then at the “mesoscopic” scale;

• over longer distances (typically the order of magnitude of the size of the domain
in question), the average density can again vary significantly, as in the case
of a heterogeneous material. However, this time they are fluctuations at the
“macroscopic” scale.

In order to define an equivalent continuous medium, the analysed sample should be
large in comparison to local heterogeneities, and of small size compared to the domain
under study. In the example above, we note that sample 1 is too small, and that sample
3 has a size allowing to overlook details of the contact behaviour of the beads rubbing
against each other, thus being a “representative volume element” allowing to model
this medium as continuous. Thus, we end up modelling the density of the medium
as a continuous function of the coordinates of the point under study; a common (but
incorrect, strictly speaking) way of referring to this point is to use the term of “particle”
or “material point”. This means we consider a physical quantity defined as an average
over a subdomain (corresponding to the particle’s volume), and that the subdomain’s
size implies that, at the studied domain’s scale, we can assume this quantity as being a
function of the point under study.





1. Deformations

All bodies deform. Modelling the material shaping (such as stamping), on the one
hand, or analysing the flow of polymers, on the other hand, requires quantifying large
deformations. On the contrary, in order to avoid failure, most materials used in industry
or construction to withstand or transmit loads need to endure small deformation. In
all cases, this deformation can vary from one point to another within the bodies under
study, and its description depends on the directions.

WHY STUDY DEFORMATIONS?

1.1 Lagrangian description of movement

In the case of a deformable material domain, a relevant framework is to highlight a preferred
configuration, which serves as a reference in the context of a description known as the “Lagrangian”
description of movement: it is usually the state of the domain when it is not subjected to any
external stress. This configuration is often referred to as “undeformed” (in the intuitive meaning of
the word), or “initial” (by associating a time t = 0), as opposed to what we describe later, which
corresponds to a “deformed” or “current” configuration (i.e. at the current time t).

1.1.1 Generic formulation

We consider a domain Ω whose particles are tracked over time, as shown in Figure 1.1 :
• at the initial time t = 0, the domain is undeformed, and we locate each particle of Ω with its

position vector p, of coordinates (p1, p2, p3) given in a determined Cartesian vector basis
(i1, i2, i3); the spatial domain occupied by all the particles of Ω is then noted as Ω0 ;

• at the given time t, the particles may have changed positions with respect to the initial
configuration; we then assume that we can define the current position of each particle of Ω,
noted x, as a known vector function f, called “placement” vector ; the latter depends on time,
but also on the vector p allowing to “identify” the particle we are tracking over time:

x = f(p, t), ∀p ∈ Ω0
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The particles of Ω now occupy a spatial domain noted Ωt , defined as:

Ωt = {x = f(p, t)|∀p ∈ Ω0}

Figure 1.1: Placement vector and movement of particles of a material domain Ω.

The knowledge of the placement vector f over time therefore allows for describing the transfor-
mation of the domain Ω: we define trajectories of the different material points of Ω, for which we
can specify the components in a given Cartesian vector basis (i1, i2, i3):

x1 = f1(p1, p2, p3, t) =
〈

f(p, t), i1
〉

x2 = f2(p1, p2, p3, t) =
〈

f(p, t), i2
〉

x3 = f3(p1, p2, p3, t) =
〈

f(p, t), i3
〉

noting that we necessarily have the compatibility condition f(p,0) = p, such that:

f1(p1, p2, p3,0) = p1

f2(p1, p2, p3,0) = p2

f3(p1, p2, p3,0) = p3

! Thus, it is necessary to distinguish the quantity x = f(p, t), which gives the position, at the
current time, of a given particle, from the quantity simply noted as x, which indicates a point
in space, regardless of the particle that could be found there (and therefore of time).
In practice, we will often note x only, when there is no risk of confusion.

Displacement field. The vector u that joins the initial position of a particle to its current
position is called displacement:

u(p, t) = f(p, t)−p

The displacements of all the particles of a material domain Ω constitute, at a given time t,
a displacement field, defined on the initial configuration Ω0. The knowledge of this field is
equivalent to that of the placement vector x = f(p, t) on the entire domain.

■ Example 1.1 — Uniform elongation. We consider a material domain Ω undergoing a transformation of the
form:

x = f(p, t) = p+a(t)
〈

p,n
〉
n, ∀p ∈ Ω0

where a is an arbitrary dimensionless scalar function of time, and n is a fixed unit vector.
The surface consisting of all the points such that

〈
p, n

〉
=C, where C is a given constant, is a portion of a plane
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moving according to an overall displacement u = a(t)Cn, with n the unit normal vector to this plane, and therefore
does not deform. This overall displacement is all the more important as the “coordinate” C of this surface with
respect to a given origin (associated with p = 0) is large: we then speak of elongation according to the direction
n, since all the segments connecting two material points, which are initially oriented along this direction, see their
length evolve over time.

The fact that this elongation is said to be uniform will be justified in Example 1.11. ■

■ Example 1.2 — Uniform shear strain. We consider a material domain Ω undergoing a transformation of the
form:

x = f(p, t) = p+b(t)
〈

p,n
〉
t, ∀p ∈ Ω0

where b is an arbitrary dimensionless scalar function of time, and n and t two fixed unit vectors, perpendicular to
each other.

The surface consisting of all the points such that
〈

p, n
〉
=C, where C is a given constant, is a portion of a plane

moving according to an overall displacement u = b(t)Ct contained in the plane of this surface and thus does not
deform. This overall displacement is the more important as the “coordinate” C of this surface with respect to a given
origin (associated with p = 0) is large: we then speak of shear on a plane of normal n according to the direction t.
The angle between two segments, each connecting two material points, and initially from directions t and n, therefore
changes over time.

The fact that this shear strain is called uniform will be justified in Example 1.13. ■

■ Example 1.3 — Movement of rigid bodies. We consider a material domain Ω undergoing a transformation
of the form:

x = f(p, t) = xA(t)+R(t)(p−pA), ∀p ∈ Ω0

where xA(t) = f(pA, t) is the placement of a given material point A of Ω, and R(t) is a rotation matrix, i.e. a matrix
verifying RTR= I (orthogonality property, detailed in Appendix A.2.6).
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Thus, if we follow over time the vector linking the point A to a given point B of Ω, we find that:

xB(t) = f(pB, t) = xA(t)+R(t)(pB −pA)

which establishes that:

∥xB(t)−xA(t)∥2 =
〈
R(t)(pB −pA),R(t)(pB −pA)

〉
=
〈
R(t)TR(t)(pB −pA),pB −pA

〉
= ∥pB −pA∥2

considering the orthogonality property of the rotation matrices. Any segment connecting two points of the solid Ω is
therefore of constant length over time, but its direction can evolve in any way in space.

Finally, it can be seen that, for such a movement, six parameters are necessary and sufficient to describe the
position at a given time of all the particles in the domain: physically, they consist of:

• three translation parameters, allowing to place spatially for example the point A used above;
• and three rotation parameters, allowing to orient in space the vector connecting point A to a given point of

the solid.
It is then said that an undeformable solid, or “rigid body”, (without any linkage, i.e. free in space) has six degrees of
freedom. ■

R Naturally, in the case of a curved domain, a curvilinear coordinate system associated with the geometry
can be used to describe the placement vector of the material domain. For example, in the case of a
domain Ω with a cylindrical shape of axis iz, we can use a cylindrical vector basis (ir(pθ ), iθ (pθ ), iz),
with associated coordinates (pr, pθ , pz), to define the initial positions of the particles of Ω:

p = prir(pθ )+ pziz

as well as, for the current placement vector, using the coordinates (r,θ ,z) and the associated cylindrical
vector basis:

x = rir(θ)+ ziz

■ Example 1.4 — Torsion of a cylindrical shaft. We consider a material domain Ω with a cylindrical shape of
axis iz, of circular cross-section of radius R and length L, undergoing a transformation of the form:

x = f(p, t) = p+ pr
(
ir(pθ + c(t)pz/L)− ir(pθ )

)
, ∀p ∈ Ω0

where p = prir(pθ )+ pziz is the initial placement vector, and c is an arbitrary dimensionless scalar function of time.
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This transformation is expressed in terms of cylindrical coordinates as:

r = pr, ∀pr ∈ [0,R]

θ = pθ +
c(t)pz

L
, ∀(pθ , pz) ∈ [0,2π)× [0,L]

z = pz, ∀pz ∈ [0,L]

Thus, any cross-section of fixed altitude pz undergoes a rigid body rotation, of axis iz and angle c(t)pz/L: c(t)
represents the angular offset (in radians) imposed between the two cylinder end sections.

In addition, an initially straight line parallel to the iz axis of the cylinder (in red in the figure above) verifies
pr =C1 and pθ =C2, where C1 and C2 are given constants. It is therefore transformed at time t as:

r =C1

θ =C2 +
c(t)pz

L
, ∀pz ∈ [0,L]

z = pz, ∀pz ∈ [0,L]

i.e. as a helix with an axis iz, same radius C1 and pitch 2πL/c(t). ■

1.1.2 Material velocity and acceleration

Since the placement vector x = f(p, t) allows for locating the position of each particle at any given
time, it is natural to define the material velocity

.

x (or Lagrangian velocity) as the variation of the
placement vector between two very close instants t and t +∆t, or, using the limit (∆t → 0):

.

x =
∂ f

∂ t
(p, t), ∀p ∈ Ω0

Similarly, the material acceleration
..

x (or Lagrangian acceleration) is then defined as the second
derivative with respect to time of the placement vector:

..

x =
∂ 2f

∂ t2 (p, t), ∀p ∈ Ω0

R For the time being, we have deliberately avoided the question of the “reference frame”, which defines
the reference relative to which we will express the variations of the placement vector, and, consequently
the expression of its temporal derivative. We, therefore, assume here that the movements are described
with respect to a “fixed observer” without further details.

■ Example 1.5 — Uniform elongation: material velocities and accelerations. By deriving with respect
to time the placement vector field studied in Example 1.1:

x = f(p, t) = p+a(t)
〈

p,n
〉
n, ∀p ∈ Ω0
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where a is an arbitrary scalar function of time, and n a fixed unit vector, we obtain the following material velocity
field:

.

x =
∂ f

∂ t
(p, t) =

.

a(t)
〈

p,n
〉
n, ∀p ∈ Ω0

as well as the material acceleration field:

..

x =
∂ 2f

∂ t2 (p, t) =
..

a(t)
〈

p,n
〉
n, ∀p ∈ Ω0

Each plane of equation
〈

p,n
〉
= C consists of particles that all have the same velocity

.

a(t)Cn and the same
acceleration

..

a(t)Cn, which is logical since this plane does not deform over time. ■

R It is possible to adopt another point of view: instead of considering the velocities and accelerations
specific to each particle, we can privilege the fact that, at a given time, we have a spatial map of velocity
and acceleration vectors, without worrying about the particles associated with each point of space; in
this description, the space variables x and time variables t are therefore independent of each other.
This point of view, where the velocities and accelerations are called “spatial” (or “Eulerian”), is
commonly adopted when describing the kinematics of fluid media, for which it is neither relevant nor
easy to identify an initial configuration. However, the following example also illustrates this point of
view in the case of a solid deformable medium.

■ Example 1.6 — Torsion of a cylindrical shaft: material velocities and accelerations. By deriving
with respect to time the placement vector studied in Example 1.4 (where p = prir(pθ )+ pziz, and c is an arbitrary
scalar function of time):

x = f(p, t) = p+ pr
(
ir(pθ + c(t)pz/L)− ir(pθ )

)
, ∀p ∈ Ω0

we obtain the following material velocity field:

.

x =
∂ f

∂ t
(p, t) = pr

.

c(t)pz

L
iθ

(

pθ +
c(t)pz

L

)

since
dir

dt

(
pθ (t)

)
=

.

pθ iθ
(

pθ (t)
)
, or, finally:

.

x =

.

c(t)pz

L
iz ∧ f(p, t), ∀p ∈ Ω0

for which we recognize the classical expression, for each particle, of the velocity of a point x = f(p, t) rotating about
the axis iz, with angular velocity

.

c(t)pz/L.
In the same way, the material acceleration field is expressed as:

..

x =
∂ 2f

∂ t2 (p, t) = pr

..

c(t)pz

L
iθ

(

pθ +
c(t)pz

L

)

− pr

(
.

c(t)pz

L

)2

ir

(

pθ +
c(t)pz

L

)

since
diθ

dt

(
pθ (t)

)
=− .

pθ ir
(

pθ (t)
)
, or, finally:

..

x =

..

c(t)pz

L
iz ∧ f(p, t)−

(
.

c(t)pz

L

)2
(
f(p, t)− pziz

)
, ∀p ∈ Ω0

for which we recognize the classical expression, for each particle, of the acceleration of a point x = f(p, t) in rotation
about the axis iz, with angular velocity

.

c(t)pz/L and angular acceleration
..

c(t)pz/L.
It is remarkable that these two fields only depend on the positions at time t of the particles under study: it is

indeed possible to adopt a spatial representation (or “Eulerian”) of this movement, by writing the velocity :

v(x, t) =
.

c(t)z
L

iz ∧x, ∀x ∈ Ωt
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and, likewise, the acceleration:

a(x, t) =
..

c(t)z
L

iz ∧x−
(

.

c(t)z
L

)2

(x− ziz), ∀x ∈ Ωt

as functions of space (where x(r,θ ,z) = rir(θ)+ ziz using cylindrical coordinates) and time, which are independent
of each other. ■

1.2 Deformation of a continuous medium

The purpose of this part is to define the notion of deformation, which will allow for describing locally
(i.e. in the vicinity of any particle) variations both in length and angle. To do this, quantitatively
determining how the neighbourhood of a given particle evolves over time is necessary.

1.2.1 Deformation gradient tensor

We have already mentioned that the notion of a continuous medium must be interpreted both
physically and mathematically: in the latter, this is equivalent to say that the placement vector f is a
continuous function of space, represented by the initial position p of each particle.

In order to describe the movement of particles being very close to a given particle p, we then
wish to write the series expansion of the placement vector f in p. In typical cases, a first-order
expansion is sufficient and allows for building a linear theory, called “first gradient” theory; we
then assume that the placement vector is differentiable to write:

fm(q, t) = fm(p, t)+
3

∑
n=1

(qn − pn)
∂ fm

∂ pn
(p, t)+o(∥q−p∥), 1 ≤ m ≤ 3

for any point q of coordinates (q1,q2,q3) in a Cartesian vector basis (i1, i2, i3), located near a given
point p, of coordinates (p1, p2, p3) in the same basis, as represented in Figure 1.2. Then we define
dp = q−p and dx = y−x, which are infinitesimal vectors that characterize the neighbourhood of
p (at t = 0) and x (at t) respectively.

Figure 1.2: Transformation of the neighbourhood of a material point.

Deformation gradient tensor. The deformation gradient tensor (or transformation tensor)
F(p, t) is the linear application associated with the Jacobian matrix of the placement vector
x = f(p, t), as defined in Appendix B.1.1:

F(p, t) = Dpx(p, t)
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allowing to relate the neighbourhoods of a point in the initial and current configurations:

dx = F(p, t)dp

and whose components in a Cartesian vector basis (i1, i2, i3) are expressed as:

Fmn(p, t) =
∂xm

∂ pn
(p, t)

where (p1, p2, p3) and (x1,x2,x3) are the respective coordinates of p and x = f(p, t) in this same
vector basis.

Appendix A.2 gives an overview of the manipulation of a second-order tensor, either in its
matrix form when expressed in a vector basis, or in a more “intrinsic” form using the tensor
product:

F=
3

∑
m=1

3

∑
n=1

∂xm

∂ pn
im ⊗ in

R It is also possible to express the deformation gradient tensor using the displacement field u(p, t): indeed,
since:

x = f(p, t) = p+u(p, t)

it can be directly established that:
F(p, t) = I+Dpu(p, t)

where I refers to the identity tensor, and Dpu is the displacement gradient tensor.

■ Example 1.7 — Uniform elongation: deformation gradient tensor. Let us consider the transformation
studied in Example 1.1:

x = f(p, t) = p+a(t)
〈

p,n
〉
n, ∀p ∈ Ω0

which can be rewritten, by virtue of the properties of the tensor product (presented in Appendix A.2.1), as:

x = (I+a(t)n⊗n)p, ∀p ∈ Ω0

which makes it possible to immediately express the deformation gradient tensor as:

F(p, t) = Dpx(p, t) = I+a(t)n⊗n, ∀p ∈ Ω0

or, in a Cartesian vector basis (i1, i2 = n, i3) including the vector n:

F(p, t) =





1 0 0
0 1+a(t) 0
0 0 1





(i1,i2=n,i3)

where i1 and i3 are two unit vectors perpendicular to n, and to each other. We then verify that:

Fmn =
∂xm

∂ pn

considering that, in our vector basis, x1 = p1, x2 = p2 +a(t)p2 and x3 = p3.
The neighbourhood of a point p, characterized by the infinitesimal vector dp, is therefore transformed as :

dx = (I+a(t)n⊗n)dp = dp+a(t)
〈

dp,n
〉
n

for any p. In the vector basis (i1, i2 = n, i3), we then have dx1 = dp1, dx2 =
(
1+a(t)

)
dp2 and dx3 = dp3.

Thus, an elemental cube, of center the particle initially located in p, and with one of its edges along n, will
elongate in this latter direction, while the sections perpendicular to n will not deform.
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Similarly, an elemental sphere, initially centered in p, will transform into an ellipsoid, with a major axis in direction
n. ■

■ Example 1.8 — Uniform shear strain: deformation gradient tensor. Let us consider the transformation
studied in Example 1.2:

x = f(p, t) = p+b(t)
〈

p,n
〉
t, ∀p ∈ Ω0

that, similarly to Example 1.7, can be rewritten as:

x = (I+b(t)t⊗n)p, ∀p ∈ Ω0

which makes it possible to immediately express the deformation gradient tensor as:

F(p, t) = Dpx(p, t) = I+b(t)t⊗n, ∀p ∈ Ω0

or, in a Cartesian vector basis (i1 = t, i2 = n, i3) including vectors t and n:

F(p, t) =





1 b(t) 0
0 1 0
0 0 1





(i1=t,i2=n,i3)

where i3 = t∧n. We then verify that:

Fmn =
∂xm

∂ pn

since in our vector basis, x1 = p1 +b(t)p2, x2 = p2 and x3 = p3.
The neighbourhood of a point p, characterized by the infinitesimal vector dp, is therefore transformed as:

dx = (I+b(t)t⊗n)dp = dp+b(t)
〈

dp,n
〉
t

for any p. In the vector basis (i1 = t, i2 = n, i3), we then have dx1 = dp1 +b(t)dp2, dx2 = dp2 and dx3 = dp3.
Thus, an elemental cube, whose center is the particle initially located in p, and one of whose faces has edges

along n and t, will deform into a non-rectangular parallelepiped..
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The same affine transformation applies to any elemental sphere initially centered in p. ■

■ Example 1.9 — Movement of rigid bodies: deformation gradient tensor. Let us consider the
transformation studied in Example 1.3:

x = f(p, t) = xA(t)+R(t)(p−pA), ∀p ∈ Ω0

We immediately establish that the deformation gradient tensor is:

F(p, t) = Dpx(p, t) = R(t)

which means that the neighbourhood of the point p, characterized by the infinitesimal vector dp, undergoes a simple
rotation:

dx = R(t)dp

and does not deform, since ∥dx∥2 =
〈
R(t)dp,R(t)dp

〉
=
〈
R(t)TR(t)dp, dp

〉
= ∥dp∥2. ■

Tensor expressions

We have seen that the components of the tensor F in a Cartesian vector basis (i1, i2, i3) can be
expressed as:

Fmn(p, t) =
∂xm

∂ pn
(p, t)

This makes it possible to obtain a synthetic expression of the tensor F; by using the expression of a
tensor on the basis of tensor products, given in Appendix A.2.1, we obtain indeed:

F=
3

∑
m=1

3

∑
n=1

Fmnim ⊗ in =
3

∑
m=1

3

∑
n=1

∂xm

∂ pn
im ⊗ in

that can be transformed as:

F=
3

∑
n=1

(
3

∑
m=1

∂xm

∂ pn
im

)

⊗ in =
3

∑
n=1

∂

∂ pn

(
3

∑
m=1

xmim

)

⊗ in

hence, finally, the intrinsic expression:

F=
3

∑
n=1

∂x

∂ pn
⊗ in

for which, in practice, it is possible to express x in a vector basis other than (i1, i2, i3).
Also, if it is more convenient to use cylindrical coordinates (pr, pθ , pz) to express the placement

vector of points of Ω, it is possible to intrinsically express the tensor F in a cylindrical vector basis
(ir(pθ ), iθ (pθ ), iz), using the chain rule:

F=
3

∑
n=1

(
∂x

∂ pr

∂ pr

∂ pn
+

∂x

∂ pθ

∂ pθ

∂ pn
+

∂x

∂ pz

∂ pz

∂ pn

)

⊗ in
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where we can group together:

3

∑
n=1

∂ pr

∂ pn
in =∇∇∇p pr,

3

∑
n=1

∂ pθ

∂ pn
in =∇∇∇p pθ ,

3

∑
n=1

∂ pz

∂ pn
in =∇∇∇p pz

with ∇∇∇p referring to the gradient in the initial configuration. As established in Appendix B.3.2, we
have ∇∇∇p pr = ir, ∇∇∇p pθ = iθ/pr and ∇∇∇p pz = iz, resulting in:

F=
∂x

∂ pr
⊗ ir +

∂x

∂ pθ
⊗ iθ

pr
+

∂x

∂ pz
⊗ iz

R The latter approach for expressing F can of course be generalized to any arbitrary system of curvilinear
coordinates (pξ , pη , pζ ):

F=
∂x

∂ pξ
⊗∇∇∇p pξ +

∂x

∂ pη
⊗∇∇∇p pη +

∂x

∂ pζ
⊗∇∇∇p pζ

where it is then sufficient to calculate the gradients of these coordinates in the initial configuration.
More details can be found in Appendix B.3.1.

Summary 1.1 — Deformation gradient tensor. The deformation gradient tensor F = Dpx

allows the infinitesimal vector dx = y−x connecting two particles considered in the current
configuration, to be expressed relative to the corresponding vector dp = q−p in the initial
configuration as:

dx(p, t) = F(p, t)dp, ∀p ∈ Ω0, ∀t

In a Cartesian vector basis (i1, i2, i3) associated with coordinates (p1, p2, p3), this tensor is
expressed as:

F(p1, p2, p3, t) =
∂x

∂ p1
(p1, p2, p3, t)⊗ i1 +

∂x

∂ p2
(p1, p2, p3, t)⊗ i2 +

∂x

∂ p3
(p1, p2, p3, t)⊗ i3

In a cylindrical vector basis (ir(pθ ), iθ (pθ ), iz) associated with coordinates (pr, pθ , pz), this
tensor is expressed as:

F(pr, pθ , pz, t) =
∂x

∂ pr
(pr, pθ , pz, t)⊗ ir +

∂x

∂ pθ
(pr, pθ , pz, t)⊗

iθ

pr
+

∂x

∂ pz
(pr, pθ , pz, t)⊗ iz

■ Example 1.10 — Torsion of a cylindrical shaft: deformation gradient tensor. Let us consider the
transformation studied in Example 1.4:

x = f(p, t) = p+ pr
(
ir(pθ + c(t)pz/L)− ir(pθ )

)
= prir(pθ + c(t)pz/L)+ pziz, ∀p ∈ Ω0

The deformation gradient tensor is then calculated as:

F(pr, pθ , pz, t) =
∂x

∂ pr
⊗ ir(pθ )+

∂x

∂ pθ
⊗ iθ (pθ )

pr
+

∂x

∂ pz
⊗ iz

with:
∂x

∂ pr
= ir

(

pθ +
c(t)pz

L

)

∂x

∂ pθ
= priθ

(

pθ +
c(t)pz

L

)

∂x

∂ pz
= pr

c(t)
L

iθ

(

pθ +
c(t)pz

L

)

+ iz
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or, finally:
F=ir

(
pθ + c(t)pz/L

)
⊗ ir(pθ )+ iθ

(
pθ + c(t)pz/L

)
⊗ iθ (pθ )

+

(

pr
c(t)
L

iθ
(

pθ + c(t)pz/L
)
+ iz

)

⊗ iz

We immediately notice the advantages of a tensor expression: the latter is very compact because it allows for mixing
vectors from different vector bases. Indeed, if one wishes to express the associated matrix, it is necessary to choose a
particular vector basis, which implies projections, and therefore additional terms, for example:

F=









cos

(
c(t)pz

L

)

−sin

(
c(t)pz

L

)

−pr
c(t)
L

sin

(
c(t)pz

L

)

sin

(
c(t)pz

L

)

cos

(
c(t)pz

L

)

pr
c(t)
L

cos

(
c(t)pz

L

)

0 0 1









(ir(pθ ),iθ (pθ ),iz)

if you choose the cylindrical vector basis (ir(pθ ), iθ (pθ ), iz) associated with the initial configuration.
In addition, the obtained tensor F can be expressed as the product of two particular tensors:

F(pr, pθ , pz, t) = R(pθ , pz, t)G(pr, pθ , pz, t)

with
R(pθ , pz, t) = ir(pθ + c(t)pz/L)⊗ ir(pθ )+ iθ (pθ + c(t)pz/L)⊗ iθ (pθ )+ iz ⊗ iz

G(pr, pθ , pz, t) = I+ pr
c(t)
L

iθ (pθ )⊗ iz

or, in the vector basis (ir(pθ ), iθ (pθ ), iz) associated with the initial configuration:

R=









cos

(
c(t)pz

L

)

−sin

(
c(t)pz

L

)

0

sin

(
c(t)pz

L

)

cos

(
c(t)pz

L

)

0

0 0 1









(ir(pθ ),iθ (pθ ),iz)

G=






1 0 0

0 1
prc(t)

L
0 0 1






(ir(pθ ),iθ (pθ ),iz)

While R is the tensor associated with the rotation around axis iz, with angle c(t)pz/L, G is a tensor,which is
characteristic of a uniform shear strain state (as detailed in Example 1.8). Physically, the neighbourhood of a point p,
characterized by the infinitesimal vector dp, undergoes a transformation:

dx = Fdp = RGdp

which is the composition of a simple shear strain transformation and a rotation. ■

R In general, it is demonstrably always possible to decompose the deformation gradient tensor as the com-
position of a tensor U, expressing how the neighbourhood of the material point under study is deformed,
with a tensor R associated with a rotation , which allows us to obtain the “polar decomposition” of F
as:

F(p, t) = R(p, t)U(p, t), ∀p ∈ Ω0, ∀t

where U is the square root of the tensor C= FTF, which is a symmetrical and positive tensor. More
details are given in Appendix A.2.5.

It is important to note that this relation is local and depends a priori on the point p that one considers.
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1.2.2 Green-Lagrange strain tensor

Now that we can mathematically describe how the vicinity of a material point evolves within a
continuous medium, we can define the deformation at each point of such a medium. We have seen
in the previous examples that we can express it in two ways:

• a variation in the length of the segments oriented along a given direction, as in Example 1.7;
• an angle variation (or “distortion”) between pairs of segments oriented into two given

directions, as in Example 1.8;
which can possibly be mixed, as in Example 1.10. To describe all these variations in a unified
manner, we introduce the following tensor.

Green-Lagrange strain tensor. The Green-Lagrange strain tensor is the tensor defined at any
point in the initial configuration of the continuous medium Ω as:

E(p, t) =
1
2

(

F(p, t)TF(p, t)− I

)

, ∀p ∈ Ω0

where F(p, t) is the deformation gradient tensor, and I the identity tensor.

Length variation in the neighbourhood of a material point

We consider the infiniteseimal vector dx connecting two infinitely close particles x and y; as we
have seen above, this vector evolves over time as:

dx = Fdp

where dp is the infinitesimal vector linking these same two particles located in p and q in the initial
configuration, as shown in Figure 1.3.

Figure 1.3: Length variation in the neighbourhood of a material point.

We can then focus on the variation over time of the length of this infinitesimal vector, or, in an
equivalent way, of the square of its length , which is expressed as:

∥dx∥2 =
〈

dx, dx
〉
=
〈
Fdp,Fdp

〉
=
〈
FTFdp, dp

〉

using the transpose of the deformation gradient tensor. By comparing with the square of the length
of the initial infinitesimal vector, we then obtain:

∥dx∥2 −∥dp∥2 =
〈
(FTF− I)dp, dp

〉

or, by using the expression of the Green-Lagrange strain tensor:

∥dx∥2 −∥dp∥2 = 2
〈
Edp, dp

〉
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If we express, in the initial configuration, the infinitesimal vector as dp = l1pi1, where i1 is
unitary, and by noting l1x = ∥dx∥, the previous relation can be rewritten as:

l2
1x − l2

1p = 2l2
1p

〈
Ei1 , i1

〉
= 2l2

1pE11

by noting Emn the components of E in a Cartesian vector basis (i1, i2, i3). The diagonal terms Enn

of the Green-Lagrange strain tensor can, therefore, be interpreted as the relative variations of the
squares of the lengths of infinitesimal vectors along respective directions in, which are vectors of
the Cartesian basis associated with the expression of the components Enn.

R Given the definition, since l2
1x > 0, we notseee that E11 >−1/2. In addition, the relation established

above can still be rewritten as:

l1x

l1p
=
√

1+2E11 =
√

C11 =U11 > 0

where terms Cmn are the components in a Cartesian vector basis (i1, i2, i3) of tensor C= FTF, called
the right Cauchy-Green deformation tensor, and U is the square root of C, of components Umn in
(i1, i2, i3), as defined in Appendix A.2.5.

■ Example 1.11 — Uniform elongation: length variations. Let us consider the transformation studied in
Example 1.1, whose deformation gradient tensor has been calculated in Example 1.7 as:

F(p, t) = I+a(t)n⊗n, ∀p ∈ Ω0

The Green-Lagrange strain tensor is then written as:

E(p, t) =
1
2

(

F(p, t)TF(p, t)− I

)

=
1
2

(

I+2a(t)n⊗n+a(t)2(n⊗n)(n⊗n)− I

)

since FT = (I+a(t)n⊗n)T = I+a(t)n⊗n = F. Finally, as (n⊗n)(n⊗n) =
〈

n,n
〉
n⊗n = n⊗n, we get:

E(p, t) =

(

a(t)+
a(t)2

2

)

n⊗n, ∀p ∈ Ω0

which shows that the strain tensor is the same whatever the point under study, hence the term “uniform” for this
transformation.

In a Cartesian vector basis (i1, i2 = n, i3) including the vector n, the tensor E can be written as:

E(p, t) =

(

a(t)+
a(t)2

2

)




0 0 0
0 1 0
0 0 0





(i1,i2=n,i3)

where i1 and i3 are two unit vectors perpendicular to n, and to each other. It is then easy to express the length
variations of infinitesimal vectors oriented along the different directions of this vector basis:

• for an infinitesimal vector oriented along n = i2, and of initial length l2p, the current length is expressed as
l2x =

(
1+a(t)

)
l2p, hence a relative variation of the square of the length equal to:

l2
2x − l2

2p

l2
2p

=
(
1+a(t)

)2 −1 = 2a(t)+a(t)2 = 2E22

• for an infinitesimal vector oriented along i1 or i3, the length remains unchanged, hence a relative variation of
the square of the length equal to zero, which is consistent with the fact that E11 = 0 = E33.

These results are directly observed in the figures below.
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■

Angle variation in the neighbourhood of a material point

We now consider two infinitesimal vectors dx1 and dx2 connecting the particles x and y1 on the one
hand, x and y2 on the other hand, knowing that y1 and y2 are very close to x; these two infinitesimal
vectors then evolve over time as:

dx1 = Fdp1, and dx2 = Fdp2

where dp1 and dp2 are the infinitesimal vectors connecting these same two pairs of particles in the
initial configuration, as shown in Figure 1.4.

Figure 1.4: Angle variation in the neighbourhood of a material point.

We can then focus on the variation over time of the angle formed by these two infinitesimal
vectors, or, in an equivalent way, on the evolution of the scalar product of these two vectors, which
is then expressed as:

〈
dx1 , dx2

〉
=
〈
Fdp1 ,Fdp2

〉
=
〈
FTFdp1 , dp2

〉

By calling α12x the angle formed by the two vectors dx1 and dx2, and by using the expression of
the Green-Lagrange strain tensor, we finally obtain:

∥dx1∥∥dx2∥cosα12x =
〈
(2E+ I)dp1 , dp2

〉
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If we express, in the initial configuration, the two infinitesimal vectors as dp1 = l1pi1 and
dp2 = l2pi2, where i1 and i2 are unit vectors, and by noting l1x = ∥dx1∥ = ∥Fdp1∥ and l2x =
∥dx2∥= ∥Fdp2∥, the previous relation can be rewritten as:

l1xl2x cosα12x = l1pl2p
〈
(2E+ I)i1 , i2

〉
= l1pl2p

(
2
〈
Ei1 , i2

〉
+ cosα12p

)

where α12p refers to the angle formed by the two vectors dp1 et dp2. Taking as a special case the
situation where i1 and i2 are perpendicular to each other, and noting Emn the components of E in
the resulting Cartesian vector basis (i1, i2, i3 = i1 ∧ i2), we finally get:

l1x

l1p

l2x

l2p
cosα12x = 2E21

The off-diagonal terms Emn (m ̸= n) of the Green-Lagrange strain tensor are therefore related to
the variation in the angle (or “distortion”) between two vectors of the basis allowing to express the
tensor: indeed, if Emn =0, then the angle between two vectors of respective initial directions im and
in is still right in the current configuration.

■ Example 1.12 — Uniform elongation: angle variations. Let us consider the transformation studied in
Example 1.1, for which the Green-Lagrange strain tensor has been calculated in Example 1.11 as:

E(p, t) =

(

a(t)+
a(t)2

2

)

n⊗n, ∀p ∈ Ω0

or, in a Cartesian vector basis (i1, i2 = n, i3):

E(p, t) =

(

a(t)+
a(t)2

2

)




0 0 0
0 1 0
0 0 0





(i1,i2=n,i3)

All off-diagonal terms of E in this basis being equal to zero, the initially right angles between the three vectors
of the basis remain right over time: there is no distortion of the basiq, as can be seen in the figures of Example 1.11.

However, if we choose two orthogonal vectors that are not collinear with the basis vectors, there may be
distortion: indeed, with dpi = n+ i1 = i2 + i1 and dp j = n− i1 = i2 − i1 which are perpendicular to each other, we
get:

∥dxi∥
∥
∥dx j

∥
∥cosαi j =

〈
(2E+ I)dpi , dp j

〉
= 2
〈
Edpi , dp j

〉
= (2a(t)+a(t)2)

〈
i2 , i2 − i1

〉

or, by specifying:

∥dxi∥2 =
〈
(2E+ I)dpi , dpi

〉
=
〈
(1+2a(t)+a(t)2)i2 + i1 , i2 + i1

〉
= 2+2a(t)+a(t)2

∥
∥dx j

∥
∥2

=
〈
(2E+ I)dp j , dp j

〉
=
〈
(1+2a(t)+a(t)2)i2 − i1 , i2 − i1

〉
= 2+2a(t)+a(t)2

it is established that:

cosαi j =
2a(t)+a(t)2

2+2a(t)+a(t)2

meaning that the angle αi j changes over time. ■

■ Example 1.13 — Uniform shear strain: angle variations. Let us consider the transformation studied in
Example 1.2, whose deformation gradient tensor has been calculated in Example 1.8 as:

F(p, t) = I+b(t)t⊗n, ∀p ∈ Ω0

The Green-Lagrange strain tensor is then expressed as:

E(p, t) =
1
2

(

F(p, t)TF(p, t)− I

)

=
1
2

(

I+b(t)t⊗n+b(t)n⊗ t+b(t)2(n⊗ t)(t⊗n)− I

)
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since FT = (I+b(t)t⊗n)T = I+b(t)n⊗ t. In the end we obtain:

E(p, t) = b(t)t⊗S n+
b(t)2

2
n⊗n, ∀p ∈ Ω0

by noting t⊗S n = 1
2 (t⊗n+n⊗ t) the symmetrical part of the tensor product t⊗n. It can then be seen that the strain

tensor is the same regardless the point under study, hence the term “uniform” for this transformation.
In a Cartesian vector basis (i1 = t, i2 = n, i3) including vectors t and n, the tensor E can be written as:

E(p, t) =
b(t)

2





0 1 0
1 b(t) 0
0 0 0





(i1=t,i2=n,i3)

where i3 = t∧n. Some off-diagonal terms are non-zero, so there is distortion of the vector basis (t,n,n, i3). Indeed:

∥Ft∥∥Fn∥cosαtn = 2
〈
Et,n

〉
= b(t)

where αtn is the angle formed by the two infinitesimal vectors initially oriented along t and n respectively. By
specifying the length variations of these two infinitesimal vectors:

∥Ft∥2 =
〈
(2E+ I)t, t

〉
=
〈

t, t
〉
= 1

∥Fn∥2 =
〈
(2E+ I)n,n

〉
=
(

1+b(t)2
)〈

n,n
〉
= 1+b(t)2

we finally establish that:

cosαtn =
b(t)

√

1+b(t)2

Besides, since
〈
Et, i3

〉
= 0 =

〈
En, i3

〉
, we establish that the directions initially oriented along t and i3 on the

one hand, and along n and i3 on the other hand, remain perpendicular to each other at all times. ■

Interpretation

Considering the results of the previous paragraphs, we can, therefore, establish that the Green-
Lagrange strain tensor E allows for expressing the two ways that a three-dimensional continuous
medium can deform:

• a variation in the length of the segments oriented along a given direction;
• a variation in angle (or distortion) between pairs of segments oriented along two given

directions.
Since the tensor E is symmetrical by definition (ET = E), only six of the nine components of this
tensor in a given vector basis are independent:

• three diagonal terms, each one corresponding to the variation of the square of the length
of the segments initially oriented along the three vectors of the basis used to express the
components;

• three off-diagonal terms (e.g. superior), each one corresponding to the variation in the initial
right angles between each pair of vectors of the used vector basis.

Of course, in the general case, these six components may depend on the point p under study in the
initial configuration.

■ Example 1.14 — Movement of rigid bodies: Green-Lagrange strain tensor. Let us consider the
transformation studied in Example 1.3 as:

x = f(p, t) = xA(t)+R(t)(p−pA), ∀p ∈ Ω0

where xA(t) is the placement vector of a given point A of Ω, and R(t) is a rotation tensor. The deformation gradient
tensor is then expressed directly as:

F(p, t) = Dpx(p, t) = R(t), ∀p ∈ Ω0
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and the Green-Lagrange strain tensor is then given by:

E(p, t) =
1
2

(

R(t)TR(t)− I

)

= 0, ∀p ∈ Ω0

considering the orthogonality property of R.
We therefore rigorously verify that the solid is non-deformable: the tensor E being equal to zero at all points,

there is no variation in length or angle within the domain. ■

■ Example 1.15 — Torsion of a cylindrical shaft: interpretation of the components of the Green-La-
grange strain tensor. Let us consider the transformation studied in Example 1.4, whose deformation gradient
tensor has been calculated in Example 1.10 as:

F=ir(pθ + c(t)pz/L)⊗ ir(pθ )+ iθ (pθ + c(t)pz/L)⊗ iθ (pθ )

+

(

pr
c(t)
L

iθ (pθ + c(t)pz/L)+ iz

)

⊗ iz

Since its transpose can be expressed as:

FT =ir(pθ )⊗ ir(pθ + c(t)pz/L)+ iθ (pθ )⊗ iθ (pθ + c(t)pz/L)

+ iz ⊗
(

pr
c(t)
L

iθ (pθ + c(t)pz/L)+ iz

)

the right Cauchy-Green deformation tensor C= FTF is such that:

C=
〈

ir(pθ + c(t)pz/L), ir(pθ + c(t)pz/L)
〉

ir(pθ )⊗ ir(pθ )

+
〈

iθ (pθ + c(t)pz/L), iθ (pθ + c(t)pz/L)
〉

iθ (pθ )⊗ iθ (pθ )

+

〈

pr
c(t)
L

iθ (pθ + c(t)pz/L)+ iz , pr
c(t)
L

iθ (pθ + c(t)pz/L)+ iz

〉

iz ⊗ iz

+
〈

ir(pθ + c(t)pz/L), iθ (pθ + c(t)pz/L)
〉(

ir(pθ )⊗ iθ (pθ )+ iθ (pθ )⊗ ir(pθ )
)

+

〈

ir(pθ + c(t)pz/L), pr
c(t)
L

iθ (pθ + c(t)pz/L)+ iz

〉
(
ir(pθ )⊗ iz + iz ⊗ ir(pθ )

)

+

〈

iθ (pθ + c(t)pz/L), pr
c(t)
L

iθ (pθ + c(t)pz/L)+ iz

〉
(
iθ (pθ )⊗ iz + iz ⊗ iθ (pθ )

)

=ir(pθ )⊗ ir(pθ )+ iθ (pθ )⊗ iθ (pθ )+

(

1+

(

pr
c(t)
L

)2
)

iz ⊗ iz

+ pr
c(t)
L

(iθ (pθ )⊗ iz + iz ⊗ iθ (pθ ))

which means that the Green-Lagrange strain tensor is written simply as:

E(p, t) = pr
c(t)
L

iθ (pθ )⊗S iz +
p2

r c(t)2

2L2 iz ⊗ iz, ∀p ∈ Ω0

by noting a⊗S b = (a⊗ b+ b⊗ a)/2 the symmetrical part of the tensor product a⊗ b, or, in the vector basis
(ir(pθ ), iθ (pθ ), iz) :

E(p, t) =
prc(t)

2L






0 0 0
0 0 1

0 1 pr
c(t)
L






(ir(pθ ),iθ (pθ ),iz)

This corresponds to the case of the shear strain studied in Example 1.13, with the difference that, here, the expression
of the tensor E depends on the point under study.

We can then express the angle variations as in Example 1.13, with b(t) = prc(t)/L, to obtain that:

cosαθz =
prc(t)

L
√

1+ p2
r c(t)2/L2



1.2 Deformation of a continuous medium 21

where αθz is the angle formed in the current configuration by the initial vectors along iθ and iz.
Besides, we obtain the length variations for infinitesimal vectors oriented along the different directions of the

cylindrical vector basis as:
• for an infinitesimal vector initially radial or orthoradial, there is no variation in length because each cross-

section undergoes a rigid body rotation, which is consistent with Err = 0 = Eθθ ;
• for an infinitesimal vector parallel to the axis of the shaft, and of initial length lzp, the Pythagorean theorem

allows us to write that its current length verifies l2
zx = l2

zp +(c(t)prlzp/L)2, which corresponds to a variation:

l2
zx − l2

zp

l2
zp

=

(
c(t)
L

pr

)2

= 2Ezz

We also verify in this right triangle that cosαθz =
prc(t)

L
√

1+ p2
r c(t)2/L2

.

■

The previous results allow us to conclude that if we know, at any point p:
• the elongations along three independent directions in the initial configuration;
• the angle variations of three independent couples of orthogonal directions in the initial

configuration;
then the elongation along any direction and the angle variations of any couple of directions can be
determined at this point p.

Summary 1.2 — Green-Lagrange strain tensor. The deformation of a continuous medium at
any point in the initial configuration is given by the Green-Lagrange strain tensor:

E(p, t) =
1
2

(

F(p, t)TF(p, t)− I

)

, ∀p ∈ Ω0

which is a symmetrical tensor.
The variation of the square of the length in the current configuration of an infinitesimal

vector initially equal to dp = ∥dp∥ep (with ep a unit vector) is then expressed as:

∥dx∥2 −∥dp∥2

∥dp∥2 = 2
〈
Eep , ep

〉

where dx = Fdp is the vector corresponding to dp in the current configuration.
The angle α12x in the current configuration between two infinitesimal vectors initially equal

to dp1 = ∥dp1∥ep1 and dp2 = ∥dp2∥ep2 (with ep1 and ep2 two unit vectors) is then expressed
as:

cosα12x =

〈
Fep1 ,Fep2

〉

∥Fep1∥∥Fep2∥
=

cosα12p +2
〈
Eep1 , ep2

〉

√
〈
(2E+ I)ep1 , ep1

〉〈
(2E+ I)ep2 , ep2

〉

knowing that the initial angle α12p verifies cosα12p =
〈

ep1 , ep2
〉
.

R As before, it is also possible to use the displacement field u(p, t) of the studied domain. It had been
established that:

F= I+Dpu

This then allows the Green-Lagrange strain tensor to be easily expressed as:

E=
1
2

(
Dpu+(Dpu)T+(Dpu)TDpu

)

It can then be seen that this tensor is non-linearly dependent on the displacement field.

Given the definition of the tensor E, the different components of the tensor are dimensionless
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numbers. The typical orders of magnitude that can be encountered before failure for several
conventional materials are presented in Table 1.1. In practice, we can see that, except for certain
classes of materials such as elastomers (rubber being a member of this family), deformations remain
very small (often in the order of a few per cent): it is, therefore, possible to focus on an approximate
expression of these deformations, developed in the following part.

Materials Orders of magnitude

Steel (reversible deformations) 10−4 à 10−2 (0.01 % à 1 %)
Steel (irreversible deformations) 10−2 à 10−1 (1 % à 10 %)

Concrete 10−3 (0.1 %)
Soil 10−2 (1 %)

Rubber superior to 1 (100 %)

Table 1.1: Typical values of admissible deformations for different materials.

1.3 Infinitesimal strain tensor

Most deformable solids used in industry or construction to support or transmit loads generally
require small levels of deformation to avoid failure. Such an observation then allows for intro-
ducing a linearized description framework that simplifies the expressions obtained in the previous
paragraphs, and that we will use throughout the rest of this textbook.

1.3.1 Infinitesimal deformation hypothesis

The so-called framework of the “infinitesimal deformation hypothesis” is in fact based on two
distinct but complementary assumptions:

1. an infinitesimal transformation hypothesis, ensuring that the two configurations, initial and
current, can be considered as similar:

x = f(p, t) = p+u(p, t)≈ p, ∀p ∈ Ω0

hypothesis equivalent to assuming that the displacement at any point is very small compared
to the characteristic dimension L of the domain under study:

∥u(p, t)∥≪ L , ∀p ∈ Ω0

2. an infinitesimal strain hypothesis, equivalent to assuming that the norm of the gradient tensor
of the displacement field at any point is very small:

∥Dpu(p, t)∥≪ 1, ∀p ∈ Ω0

where the tensor norm ∥Dpu∥2 = tr
(
(Dpu)TDpu

)
is used as explained in Appendix A.2.2;

this allows us to linearize the expression of the Green-Lagrange strain tensor as a function of
the displacement field:

E(p, t) =
1
2

(
Dpu+(Dpu)T+(Dpu)TDpu

)
≈ 1

2

(
Dpu+(Dpu)T

)

R The previous hypothesis also allows us to consider as similar the gradient expressions in the initial
and current configurations; indeed, for any vector field wp(p, t) in the initial configuration, which is
transformed as wx(x, t) = wx(f(p, t), t) = wp(p, t) in the current configuration, the chain rule allows
for establishing that:

Dpwp = (Dxwx)F= Dxwx
(
I+Dpu

)
≈ Dxwx

assuming that
∥
∥Dpu(p, t)

∥
∥≪ 1.
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Given the infinitesimal deformation hypothesis, in what follows, we arbitrarily choose to keep
the notation x to designate the placement vector of a particle, regardless of the configuration that
we consider.

1.3.2 Definition and properties

In what follows, a new description of the deformations of the studied medium is introduced in the
framework of the infinitesimal deformation hypothesis.

Infinitesimal strain tensor. The symmetrical part of the displacement gradient tensor is called
the infinitesimal strain tensor:

–ε(x, t) =
1
2

(

Dxu(x, t)+
(
Dxu(x, t)

)T
)

, ∀x ∈ Ω, ∀t

in the framework of the infinitesimal deformation hypothesis, where the initial and current
configurations have been merged into a single one denoted Ω.

This tensor corresponds to the linearization of the Green-Lagrange strain tensor when we
assume that the displacement gradient tensor is “small enough”; indeed, as mentioned above, this is
equivalent, in practice, to writing, with x ≈ p:

E(p, t) =
1
2

(
Dpu+(Dpu)T+(Dpu)TDpu

)
≈ 1

2

(
Dxu+(Dxu)T

)

■ Example 1.16 — Torsion of a cylindrical shaft: infinitesimal strain tensor. Let us consider the
transformation studied in Example 1.4, for which the displacement field is written as:

u(p, t) = pr
(
ir(pθ + c(t)pz/L)− ir(pθ )

)
, ∀p ∈ Ω0

As defined above, the infinitesimal deformation hypothesis is equivalent to assume:
1. that ∥u(p, t)∥ ≪ min(R,L), ∀p ∈ Ω0, which is equivalent to consider u(x, t) = rzc(t)/L iθ (θ), when you

assume |c(t)| ≪ 1, ∀t, and in the usual case where R < L;
2. that

∥
∥Dpu(p, t)

∥
∥= ∥F(p, t)− I∥≪ 1, which is the same here as assuming that R|c(t)| ≪ L, ∀t.

These two hypotheses are not necessarily equivalent: indeed, in the case of a very slender cylinder (R ≪ L), it is
possible to have R|c(t)| ≪ L without |c(t)| being small.

In this context, the infinitesimal strain tensor can be expressed as the symmetrical part of the displacement
gradient tensor (expressed in the current coordinate system):

–ε =
1
2

(

Dxu+(Dxu)T
)

where the displacement gradient tensor is equal to:

Dxu(x, t) =
∂u

∂ r
(x, t)⊗ ir(θ)+

∂u

∂θ
(x, t)⊗ iθ (θ)

r
+

∂u

∂ z
(x, t)⊗ iz

=
zc(t)

L
iθ (θ)⊗ ir(θ)−

zc(t)
L

ir(θ)⊗ iθ (θ)+
rc(t)

L
iθ (θ)⊗ iz

hence, finally:

–ε(x, t) =
rc(t)

L
iθ (θ)⊗S iz

This result can also be found by linearizing the Green-Lagrange strain tensor (determined in Example 1.15),
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when we assume that R|c(t)| ≪ L, ∀t:

E(p, t) = pr
c(t)
L

(

iθ (pθ )⊗S iz +
prc(t)

2L
iz ⊗ iz

)

≈ pr
c(t)
L

iθ (pθ )⊗S iz

after considering the two configurations as one when it is assumed that |c(t)| ≪ 1, ∀t. ■

! It is, of course, essential to adopt the infinitesimal deformation hypothesis in order to correctly
use the infinitesimal strain tensor to describe the deformation of the medium.
Thus, if we take the case of the movement of a rigid body, we had determined in Example 1.14
that the Green-Lagrange strain tensor E was equal to zero. Therefore, we can write that the
infinitesimal strain tensor is:

–ε =
1
2

(
Dxu+(Dxu)T

)
= E− 1

2
(Dxu)TDxu =−1

2
(Dxu)TDxu

with Dxu = F− I=R− I in this case (see Example 1.14), where R is a rotation tensor, which
verifies the orthogonality property: RTR= I (as detailed in Appendix A.2.6). We then find
that:

–ε =−1
2
(R− I)T(R− I) =

1
2

(
R+RT−2I

)

which is not equal to zero in the case of an arbitrary rotation: this is logical, since, in the
general case, it is not possible to consider the initial and current configurations as one.
The infinitesimal strain tensor is equal to zero only if R+RT = 2I, which corresponds to the
case when the rotation tensor can be written as:

R= I+r, with r
T =−r

which in fact corresponds, as detailed in Appendix A.2.6, to an infinitesimal rotation of
angle ϕ = ∥r∥ around the direction e = r/∥r∥, where r is the vector associated with the
antisymmetric tensor r (see Appendix A.2.1). This result confirms that the infinitesimal strain
tensor is able to represent the non-deformability of the solid, provided that one is actually
within the framework of the infinitesimal deformation hypothesis.

Tensor expressions

The tensor expression of the infinitesimal strain tensor is derived directly from the one obtained for
the displacement gradient tensor, which, formally, is very similar to that set for the deformation
gradient tensor.

In the case of a Cartesian vector basis (i1, i2, i3), we can write this displacement gradient tensor,
at any point x = x1i1 + x2i2 + x3i3, as:

Dxu =
3

∑
n=1

∂u

∂xn
⊗ in

hence, for the infinitesimal strain tensor:

–ε =
3

∑
n=1

∂u

∂xn
⊗S in =

3

∑
n=1

1
2

(
∂u

∂xn
⊗ in + in ⊗

∂u

∂xn

)

or, in matrix form in the same vector basis:

–ε(x, t) =











∂u1

∂x1

1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
1
2

(
∂u1

∂x3
+

∂u3

∂x1

)

1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
∂u2

∂x2

1
2

(
∂u2

∂x3
+

∂u3

∂x2

)

1
2

(
∂u1

∂x3
+

∂u3

∂x1

)
1
2

(
∂u2

∂x3
+

∂u3

∂x2

)
∂u3

∂x3











(i1,i2,i3)
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where u = u1i1 +u2i2 +u3i3.

In addition, it is possible to obtain a similar tensor expression for another coordinate system;
in the case of cylindrical coordinates (r,θ ,z) associated with the vector basis (ir(θ), iθ (θ), iz), we
obtain, as in the case of the deformation gradient tensor:

Dxu =
∂u

∂ r
⊗ ir +

∂u

∂θ
⊗ iθ

r
+

∂u

∂ z
⊗ iz

which implies the following expresssion for the infinitesimal strain tensor:

–ε =
∂u

∂ r
⊗S ir +

∂u

∂θ
⊗S

iθ

r
+

∂u

∂ z
⊗S iz

Calculating the tensor using this expression must take into account the fact that two of the three
basis vectors depend on the angle θ , and that the derivatives with respect to the latter must be
included in the term:

∂u

∂θ
=

∂ur

∂θ
ir +ur

∂ ir

∂θ
+

∂uθ

∂θ
iθ +uθ

∂ iθ

∂θ
+

∂uz

∂θ
iz

with u = urir +uθ iθ +uziz. Since:

∂ ir

∂θ
(θ) = iθ (θ), and

∂ iθ

∂θ
(θ) =−ir(θ)

we finally obtain the following matrix expression:

–ε(x, t) =











∂ur

∂ r
1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂ r
− uθ

r

)
1
2

(
∂ur

∂ z
+

∂uz

∂ r

)

1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂ r
− uθ

r

)
1
r

∂uθ

∂θ
+

ur

r
1
2

(
∂uθ

∂ z
+

1
r

∂uz

∂θ

)

1
2

(
∂ur

∂ z
+

∂uz

∂ r

)
1
2

(
∂uθ

∂ z
+

1
r

∂uz

∂θ

)
∂uz

∂ z











(ir,iθ ,iz)

Interpretation

As with the Green-Lagrange strain tensor, the infinitesimal strain tensor is symmetrical, and
therefore only six of the nine components of the latter are independent in a given vector basis.

Concerning the diagonal terms, we can see that, starting from the interpretation defined above
for the Green-Lagrange strain tensor, we can establish that for an infinitesimal vector l0e, with
l0 ≪ 1 and e a unit vector, and whose length varies by ∆l:

2
〈
Ee, e

〉
=

l2 − l2
0

l2
0

=
(l0 +∆l)2 − l2

0

l2
0

≈ 2
∆l
l0

= 2
〈

–εe, e
〉

up to order one in ∆l, assuming, in the context of the infinitesimal deformation hypothesis, that
∆l ≪ l0.

Similarly, we can write for the off-diagonal terms, with infinitesimal vectors l10e1 and l20e2

(where l10 ≪ 1, l20 ≪ 1, and e1, e2 unit vectors and perpendicular to each other) that:

2
〈
Ee2 , e1

〉
=

l1l2
l10l20

cosα12 =
(l10 +∆l1)(l20 +∆l2)

l10l20
cos
(π

2
−∆α12

)

≈ ∆α12

up to order zero in ∆l1 ≪ l10 and ∆l2 ≪ l20, and up to order one in ∆α12, which represents distortion,
i.e. the variation in angle with respect to the right initial angle, using the infinitesimal deformation
hypothesis (∆α12 ≪ 1).
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■ Example 1.17 — Uniform elongation: infinitesimal strain tensor. We consider the transformation
described in Example 1.1, for which we can express the displacement as:

u(p, t) = a(t)
〈

p,n
〉
n = a(t)(n⊗n)p, ∀p ∈ Ω0

In the case where |a(t)| ≪ 1, ∀t, we can assume that p ≈ x and place ourselves in the framework of the infinitesimal
deformation hypothesis, thus calculating the infinitesimal strain tensor as the symmetrical part of the displacement
gradient tensor. This latter is expressed as:

Dxu(x, t) = a(t)n⊗n, ∀x ∈ Ω

which indeed verifies that ∥Dxu(x, t)∥≪ 1, ∀x ∈ Ω. Since this gradient tensor is symmetrical, we finally get:

–ε(x, t) = a(t)n⊗n, ∀x ∈ Ω

which corresponds exactly to the approximate expression, up to order one in a(t), of the Green-Lagrange strain
tensor obtained in Example 1.11:

E=

(

a(t)+
a(t)2

2

)

n⊗n ≈ a(t)n⊗n

In a Cartesian vector basis (i1, i2 = n, i3) including the vector n, the infinitesimal strain tensor can be written as:

–ε(x, t) =





0 0 0
0 a(t) 0
0 0 0





(i1,i2=n,i3)

where i1 et i3 are two unit vectors perpendicular to n, and to each other. It is then easy to express the length variations
of infinitesimal vectors oriented along the different directions of this vector basis:

• for an infinitesimal vector oriented along n = i2 and of initial length l0, the current length is expressed as
l =
(
1+a(t)

)
l0, meaning a variation in length ∆l verifying:

∆l
l0

= a(t) = ε22(t)

• for an infinitesimal vector oriented along i1 or i3, the current length remains unchanged, meaning no change
in length, which is consistent with the fact that ε11 = 0 = ε33.

■

■ Example 1.18 — Uniform shear strain: infinitesimal strain tensor. We consider the transformation
described in Example 1.2, for which we can express the displacement as:

u(p, t) = b(t)
〈

p,n
〉
t = b(t)(t⊗n)p, ∀p ∈ Ω0

In the case where |b(t)| ≪ 1, ∀t, we can assume that p ≈ x and place ourselves in the framework of the infinitesimal
deformation hypothesis. The displacement gradient tensor is then written as:

Dxu(x, t) = b(t)t⊗n, ∀x ∈ Ω

and we finally obtain the infinitesimal strain tensor as the symmetrical part of this displacement gradient tensor:

–ε(x, t) = b(t)t⊗S n, ∀x ∈ Ω

which corresponds exactly to the approximate expression, up to order one in b(t), of the Green-Lagrange strain
tensor obtained in Example 1.13:

E= b(t)t⊗S n+
b(t)2

2
n⊗n ≈ b(t)t⊗S n

In a Cartesian vector basis (i1 = t, i2 = n, i3) including the vectors t and n, the infinitesimal strain tensor can be
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written as:

–ε(x, t) =
b(t)

2





0 1 0
1 0 0
0 0 0





(i1=t,i2=n,i3)

where i3 = t∧n. All diagonal terms are equal to zero, so it can be deduced that there is no variation in length
(adopting the infinitesimal deformation hypothesis).

Besides, some of the off-diagonal terms are non-zero, so there is distortion of the vector basis (t,n, i3). Indeed:

b(t) = 2
〈

–εt,n
〉
≈ cos

(π

2
−∆αtn

)

≈ ∆αtn

where ∆αtn ≪ 1 is the variation of the initially right angle, formed by the two infinitesimal vectors initially oriented
along t and n respectively.

Conversely, since
〈

–εt, i3
〉
= 0 =

〈
–εn, i3

〉
, we establish that the directions initially oriented along t and i3 on the

one hand, and along n and i3 on the other hand, remain perpendicular to each other at all times. ■

Summary 1.3 — Infinitesimal strain tensor. In the infinitesimal deformation hypothesis, the
infinitesimal strain tensor corresponds to the symmetrical part of the displacement gradient
tensor:

–ε =
1
2

(

Dxu+(Dxu)T
)

In a Cartesian vector basis (i1, i2, i3), with associated coordinates (x1,x2,x3), this tensor can
be expressed as:

–ε(x1,x2,x3) =
∂u

∂x1
(x1,x2,x3)⊗S i1 +

∂u

∂x2
(x1,x2,x3)⊗S i2 +

∂u

∂x3
(x1,x2,x3)⊗S i3

where, by definition, a⊗S b = (a⊗b+b⊗a)/2.
In a cylindrical vector basis (ir(θ), iθ (θ), iz), with associated coordinates (r,θ ,z), this tensor

can be expressed as:

–ε(r,θ ,z) =
∂u

∂ r
(r,θ ,z)⊗S ir(θ)+

∂u

∂θ
(r,θ ,z)⊗S

iθ (θ)

r
+

∂u

∂ z
(r,θ ,z)⊗S iz

The variation in length ∆l of an infinitesimal vector of length l0 and direction e can be
expressed as :

∆l
l0

=
〈

–εe, e
〉

The angle variation ∆α12 between two infinitesimal vectors of respective lengths l10 and l20,
and directions e1 and e2 perpendicular to each other, verifies:

∆α12

2
=
〈

–εe2 , e1
〉

■ Example 1.19 — Radial expansion of a cylinder. We consider a cylinder of revolution of axis iz, whose
radius increases over time; by choosing the cylindrical vector basis (ir(θ), iθ (θ), iz) associated this latter, the
displacement of a given point of the cylinder, of coordinates (r,θ ,z), can then be written, at each instant, as:

u(r,θ ,z, t) = ur(r, t)ir(θ)

where it is assumed that the radial displacement ur is invariant by rotation around the cylinder axis, and does not
depend on the altitude of the point along the axis.

The infinitesimal strain tensor is then obtained using the intrinsic expression established above in cylindrical
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coordinates:

–ε =
∂u

∂ r
⊗S ir +

∂u

∂θ
⊗S

iθ

r
+

∂u

∂ z
⊗S iz

where:
∂u

∂ r
= u′rir

∂u

∂θ
= uriθ

∂u

∂ z
= 0

with •′ = ∂•
∂ r

, which results in the following expression:
–ε(r,θ ,z) = u′r(r, t)ir(θ)⊗ ir(θ)+

ur(r, t)
r

iθ (θ)⊗ iθ (θ)

This example illustrates the curvature effects that play an extremely important role in the mechanical study of
structures; indeed, the cylindrical geometry of the domain links the radial and circumferential dimensions since,
if the radius of the cylinder increases, its circumference also increases. This is reflected in the infinitesimal strain
tensor, which allows us to find locally that:

∆lθ
lθ0

= εθθ =
ur

r

for any infinitesimal segment of direction iθ and length lθ0. ■

! The previous example shows that it is essential to be aware that, even if the studied displace-
ment is invariant by rotation around the cylinder axis, the infinitesimal strain tensor has a
circumferential component; indeed, the circumference of the cylinder can only change if the
cylinder radius is modified.

1.3.3 Study of infinitesimal local perturbations

Here we illustrate different aspects related to the analysis and measurement of deformations, within
the framework of the infinitesimal deformation hypothesis.

Transformation of the neighbourhood of a point

In Paragraph 1.2.1, we have defined the deformation gradient tensor, which allows us to characterize
the transformation of the neighbourhood of a point, by specifying the evolution over time of an
infinitesimal vector dp given in the initial configuration, and we have seen how to express it using
the displacement gradient tensor:

dx = F(p, t)dp =
(
I+Dpu(p, t)

)
dp, ∀p ∈ Ω0, ∀t

In the framework of the infinitesimal deformation hypothesis, it is then possible to consider the
initial and current configurations as one, and, by choosing x as the space variable, to simply write
that:

dx =
(
I+Dxu(x, t)

)
dp =

(
I+ –ε(x, t)+r(x, t)

)
dp, ∀x ∈ Ω, ∀t

where r is the antisymmetrical part of the displacement gradient tensor, defined as:

r(x, t) =
1
2

(

Dxu(x, t)−
(
Dxu(x, t)

)T
)

, ∀x ∈ Ω, ∀t

We can then show that we can associate to this antisymmetrical tensor a vector r such that, for any
arbitrary vector c, we have :

r(x, t)c = r(x, t)∧ c, ∀x ∈ Ω, ∀t
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(see Appendix A.2.1 for more details), and that the tensor I+r actually corresponds to an infinites-
imal rotation with angle ϕ = ∥r∥ and direction e = r/∥r∥, as detailed in Appendix A.2.6.

Thus, the neighbourhood of a point, undergoes, in the framework of the infinitesimal defor-
mation hypothesis, a transformation that can be decomposed as the sum of a pure deformation,
represented by the infinitesimal strain tensor –ε, and a (infinitesimal) rigid body rotation , represented
by the tensor I+r.

R This result can also be obtained from the polar decomposition of the deformation gradient tensor, which
was mentioned as a remark at the end of Paragraph 1.2.1:

F= RU

where R is a rotation tensor, and U is the square root of the right Cauchy-Green deformation tensor
C= I+2E, which is symmetrical. Indeed, by placing oneself within the framework of the infinitesimal
deformation hypothesis, one can approximate the rotation as:

R≈ I+r, with r
T =−r

considering what is described in Appendix A.2.6, and the square root, using a series expansion similar
to what can be written on scalar functions:

U= (I+2E)
1
2 ≈ I+

2 –ε

2

implying finally, up to order one:

F= RU≈ (I+r)(I+ –ε)≈ I+ –ε+r

■ Example 1.20 — Torsion of a cylindrical shaft: transformation of the neighbourhood of a point.
We consider the transformation described in Example 1.4, for which we saw in Example 1.16 that the displacement
field, in the context of the infinitesimal deformation hypothesis, was written as:

u(x, t) =
rzc(t)

L
iθ (θ), ∀x ∈ Ω

and that, in the same context, the displacement gradient tensor was expressed as:

Dxu(x, t) =
zc(t)

L
iθ (θ)⊗ ir(θ)−

zc(t)
L

ir(θ)⊗ iθ (θ)+
rc(t)

L
iθ (θ)⊗ iz

which allowed to determine the infinitesimal strain tensor as follows:

–ε(x, t) =
rc(t)

L
iθ (θ)⊗S iz

From these results, it is easy to obtain that the antisymmetrical part of the displacement gradient tensor is written
as:

r(x, t) = 2
zc(t)

L
iθ (θ)⊗A ir(θ)+

rc(t)
L

iθ (θ)⊗A iz

where a⊗A b = (a⊗b−b⊗a)/2 is the antisymmetrical part of the tensor a⊗b. The first term can be interpreted as
an infinitesimal rotation around the axis iz and with angle zc(t)/L, which corresponds to the rotation tensor R that
was highlighted in Example 1.10. ■

Local analysis of strains

We have seen earlier that, in general, the infinitesimal strain tensor is not diagonal when expressed
in a given vector basis (i1, i2, i3): this physically means that an elemental subdomain, with cubic
shape and edges along these three directions, is distorted. We can then wonder if it is possible to
find orientations such that these elemental cubes remain effectively parallelepiped in shape, with
right angles.

The answer to this question can be mathematical: indeed, we have seen that, by definition, the
infinitesimal strain tensor is, at any point and at any time, symmetrical. It is thus possible to find an
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orthonormal basis of eigenvectors φφφε
k such that we can write:

–εφφφε
k = λ ε

k φφφε
k

The eigenvalues λ ε
k are called “principal strains”, and the eigenvectors φφφε

k associated with the latter
“principal strain directions”. In the general case, these quantities depend on the point and time that
one considers

Thus, physically, any elemental sub-domain of cubic shape and oriented along these three
directions φφφε

k undergoes only elongations or shortenings along these axes, without any distortion.
From a graphical point of view, it is then possible to represent, at each point of the domain, three
vectors oriented according to the principal directions φφφε

k and with amplitudes the values of the
principal strains λ ε

k , which can facilitate the understanding of the strain tensor field of a complicated
mechanical part.

■ Example 1.21 — Torsion of a cylindrical shaft: principal strains. We consider the transformation
described in Example 1.4, for which we saw in Example 1.16 that the displacement field, in the context of the
infinitesimal deformation hypothesis, was written as:

u(x, t) =
rzc(t)

L
iθ (θ), ∀x ∈ Ω

and that, in the same context, the infinitesimal strain tensor was expressed as:

–ε(x, t) =
rc(t)

L
iθ (θ)⊗S iz

Since the principal strains λ ε
k are defined as the eigenvalues of the infinitesimal strain tensor, it is possible, for

example, to determine them as the roots of the characteristic polynomial (as specified in Appendix A.2.4):

0 = det( –ε−λ ε
k I) =−λ ε

k
3 +

(
rc(t)
2L

)2

λ ε
k

which therefore allows for obtaining as principal strains:

λ ε
1 =

rc(t)
2L

, λ ε
2 = 0, λ ε

3 =− rc(t)
2L

of associated principal directions:

φφφε
1 = (iθ + iz)/

√
2, φφφε

2 = ir, φφφε
3 = (iθ − iz)/

√
2

The figure below shows these principal directions for various points on the lateral surface of the cylinder.

Thus, any elemental domain of cubic shape and oriented according to ir and according to the bisector of the angle
formed by iθ and iz is not distorted: it extends of (iθ + iz)/

√
2, and shortens of (iθ − iz)/

√
2. ■
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R It is, of course, possible to define in a similar way the principal strains and directions of the Green
Lagrange strain tensor, since the latter is symmetrical. The physical interpretation is then identical to
the case of infinitesimal strain.

Strain measurement

From an experimental point of view, strain measurement is part of what is called “extensometry”;
among the most common techniques, we can mention:

• extensometers, which are devices fixed to the surface of the object under study using two
“knife edges” aligned perpendicularly to the measurement axis e (as shown in Figure 1.5a),
and which thus allow for measuring the variation in length ∆l between the two zones in
contact with the extensometer; we then assume that the strain is homogeneous between the
two knife edges (initially spaced l0 apart), in order to determine:

εee =
〈

–εe, e
〉
=

∆l
l0

• strain gauges, which consist of a conductor wire whose variation in electrical resistance is
measured using a Wheatstone bridge; as shown in Figure 1.5b, this wire is arranged in a
zig-zag pattern of parallel lines oriented along a specific e direction, along which the strain is
measured since the variation in length of an electrical conductor is directly proportional to
the variation in electrical resistance R:

εee =
〈

–εe, e
〉

∝
∆R
R

the dimensions of the gauge being usually small, we can consider that the measurement
is punctual; besides, by associating gauges of different orientations at the same point, it is
possible to determine the three strain components in the plane of the surface on which the
gauges are glued, as we will see in Example 1.22;

(a) Extensometer. (b) Strain gauge.

Figure 1.5: Strain measurement.

• image correlation techniques, which make it possible, using successive images (photographs,
electron microscopy images, . . . ), to determine by computer processing the displacements of
the various points of the image from one image to another, and thus to calculate the strain
field in the plane (i1, i2) of the observed surface:

–ε = ε11i1 ⊗ i1 + ε22i2 ⊗ i2 +2ε12i1 ⊗S i2

in the case where it is possible to have two acquisition devices, it is then possible, by
stereocorrelation, to obtain information concerning the out-of-plane displacement of the
points of the observed surface (which, moreover, can then be of any arbitrary shape).
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■ Example 1.22 — Strain gauge rosettes. Around the same point, on the flat surface of a structure, three
strain gauges with different orientations ek are placed, each of which measures the longitudinal strain εek along the
direction ek. We then try to link these three measurements to the components of the infinitesimal strain tensor at the
point under study, in a vector basis (i1, i2) of the studied surface:

–ε = ε11i1 ⊗ i1 + ε22i2 ⊗ i2 +2ε12i1 ⊗S i2

Considering that θk is the angle formed by the direction i1 and the direction ek of the k-th gauge, we can write
that:

εek =
〈

ek , –εek
〉

=
〈

cosθki1 + sinθki2 , –ε(cosθki1 + sinθki2)
〉

=
〈

cosθki1 + sinθki2 , cosθk(ε11i1 + ε12i2)+ sinθk(ε12i1 + ε22i2)
〉

= cos2 θk ε11 + sin2 θk ε22 +2cosθk sinθk ε12

The components of the infinitesimal strain tensor are then determined by inverting the following matrix system:





cos2 θ1 sin2 θ1 2cosθ1 sinθ1

cos2 θ2 sin2 θ2 2cosθ2 sinθ2

cos2 θ3 sin2 θ3 2cosθ3 sinθ3









ε11
ε22
ε12



=





εe1

εe2

εe3





In practice, it is possible to use gauge “rosettes”, using gauges oriented at particular angles:
• rectangular rosettes, where the gauges are then separated by angles of 45° (θ1 = 0°, θ2 = 45°, θ3 = 90° for

example), which establishes that :

ε11 = εe1 , ε22 = εe3 , ε12 = εe2 −
εe1 + εe3

2

• equiangular rosettes, where the gauges are separated by angles of 60° (θ1 = −60°, θ2 = 0°, θ3 = 60° for
example), which allows us to obtain:

ε11 = εe2 , ε22 =
2εe1 +2εe3 − εe2

3
, ε12 =

εe3 − εe1√
3

■

1.4 Volume change and mass conservation

In addition to studying local variations in length and angle, it may be interesting to determine
whether or not the volume of the studied domain remains constant when transformed. Since mass
is assumed to be an invariant property of matter, local volume change then provides information on
the evolution of density over time.

1.4.1 Volume change

On a global scale, it is possible to link estimates of the volume occupied by the material domain
between the initial and current configurations; by definition, we can write that:

V0 = V (0) =
∫

Ω0

dVp
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is the initial volume of the domain, while the volume at the current time is:

V (t) =
∫

Ωt

dVx

By using the substitution x = f(p, t) in this latter integral, we establish, using the result of Ap-
pendix B.2.1, that:

V (t) =
∫

Ωt

dVx =
∫

Ω0

detF(p, t)dVp

or, locally, as shown in Figure 1.6, that the volume element dVp = |
〈

dp1 , dp2 ∧dp3
〉
| in the initial

configuration is transformed as dVx = |
〈

dx1 , dx2 ∧dx3
〉
| such that:

dVx = detF(p, t)dVp

which allows us to affirm that the local volume change is expressed using the determinant of the
deformation gradient tensor.

Figure 1.6: Elemental volume change.

If we consider the infinitesimal deformation hypothesis, we then write that F= I+Dxu with
∥Dxu∥≪ 1, which allows us to establish, using a series expansion up to order one of the determinant,
that:

detF= det(I+Dxu)≈ 1+ trDxu

Rewriting this expression using Cartesian coordinates (x1,x2,x3), we notice that:

trDxu = tr –ε =
3

∑
k=1

∂uk

∂xk
= divx u

where divx u is the divergence of the displacement field (defined in Appendix B.1.1), which finally
establishes that the relative local volume change can be written, for any volume element V located
in x, as:

dV

V
= divx u

where dV is the variation in volume V between the two configurations.
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R This last result can be physically interpreted using a volume element of rectangular parallelepipedic
shape, initially of dimensions l10, l20 and l30 along the directions (i1, i2, i3) of the infinitesimal strain
tensor at that point.

At the current time, these dimensions then become l1 = l10 +∆l1, l2 = l20 +∆l2 and l3 = l30 +∆l3
respectively, so that it can be written that:

dV

V
≈ ∆l1

l10
+

∆l2
l20

+
∆l3
l30

= ε1 + ε2 + ε3 = tr –ε = divx u

since |∆lk| ≪ lk0,1 ≤ k ≤ 3.

■ Example 1.23 — Uniform elongation: volume change. The transformation described in Example 1.1 is
considered:

x = f(p, t) = p+a(t)
〈

p,n
〉
n, ∀p ∈ Ω0

for which we expressed in Example 1.7 the deformation gradient tensor in a vector basis (i1, i2 = n, i3) as:

F(p, t) =





1 0 0
0 1+a(t) 0
0 0 1





(i1,i2=n,i3)

where i1 and i3 are two unit vectors perpendicular to n, and to each other.
It is then easy to determine that detF= 1+a(t), ∀p ∈ Ω0, and therefore that the relative local volume change

is uniform, and is expressed as the overall volume change:

V (t)−V0

V0
= a(t)

In the context of the infinitesimal deformation hypothesis (|a(t)| ≪ 1, ∀t), we find on this specific example a
similar result:

dV

V
= divx u = trDxu = tr(a(t)n⊗n) = a(t)

which is uniform, and allows us to find the same global volume change as before. ■

The previous relations then allow to introduce and characterize the notion of incompressibility.

Incompressibility. A material domain will be qualified as incompressible if the transformation
it undergoes is carried out locally, at any point, at a constant volume, i.e. if:

detF(p, t) = 1, ∀p ∈ Ω0, ∀t

This condition becomes, in the context of the infinitesimal deformation hypothesis:

divx u(x, t) = 0, ∀x ∈ Ω, ∀t

■ Example 1.24 — Torsion of a cylindrical shaft: volume change. The transformation described in
Example 1.4 is considered:

x = f(p, t) = p+ pr
(
ir(pθ + c(t)pz/L)− ir(pθ )

)
= prir(pθ + c(t)pz/L)+ pziz, ∀p ∈ Ω0

and for which the derformation gradient tensor has been expressed in Example 1.10 as:

F= RG
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where R is a rotation tensor, which verifies that detR= 1, and :

G=






1 0 0

0 1
prc(t)

L
0 0 1






(ir(pθ ),iθ (pθ ),iz)

It is then easy to determine that detF= (detR)(detG) = 1, ∀p ∈ Ω0, which means that there is no relative local
volume change, and therefore that :

V (t) = V0, ∀t

Indeed, the cylinder, even in torsion, always has the same volume since its different cross-sections only rotate rigidly
around the axis iz.

In the context of the infinitesimal deformation hypothesis, we find on this specific example a similar result:

dV

V
= divx u =

c(t)
L

divx

(
rz iθ (θ)

)
= 0

which allows us to find that the volume of the domain remains constant over time. ■

Summary 1.4 — Local volume change. The variation over time of the volume of an elemental
sub-domain dΩ0, around p in the initial configuration, is expressed as:

dVx = detF(p, t)dVp, ∀p ∈ Ω0, ∀t

In the infinitesimal deformation hypothesis, the relative volume change for an elemental volume
V is:

dV

V
= trDxu(x, t) = divx u(x, t), ∀x ∈ Ω, ∀t

R It is possible to evaluate, in the same way as for volumes, the evolution of the area of a surface;
Appendix B.2.1 allows for establishing that an elemental surface dSp = ∥dp1 ∧dp2∥ in the initial
configuration changes to dSx = ∥dx1 ∧dx2∥ such that:

dSx = detF
∥
∥
∥F

−T(dp1 ∧dp2)
∥
∥
∥= detF

∥
∥
∥F

−Tnp

∥
∥
∥dSp

by noting np the unit normal vector to the initial surface (such that dp1 ∧∧ddp2 = dSpnp).
In particular, even in the case of an incompressible transformation (detF= 1), it is possible, for specific
surfaces, to have variations in area (

∥
∥F−Tnp

∥
∥ ̸= 1).

1.4.2 Mass conservation

A corollary to the expression of volume change is the evolution of density, which we defined as a
local quantity, attached to the particles constituting the medium under consideration, assuming the
continuity of this latter.

Material expression

Thus, we can consider an arbitrary sub-domain ωt , contained in the domain Ωt ; since the mass is a
property that is assumed to be invariant, it is possible to affirm that:

M =
∫

ωt

ρ(x, t)dVx =
∫

ω0

ρ0(p)dVp, ∀t

by associating the initial configuration with the density ρ0, and the current configuration with the
density ρ . By transforming, as in the case of volume change, the first integral using the substitution
x = f(p, t), we can thus affirm that:

∫

ω0

(
ρ(f(p, t), t)detF(p, t)−ρ0(p)

)
dVp = 0, ∀t, ∀ωt ⊂ Ωt
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Since this relation is valid regardless of the sub-domain ωt included in Ωt , we can deduce that the
integrand is equal to zero, and therefore that:

ρ
(
f(p, t), t

)
=

ρ0(p)

detF(p, t)
, ∀p ∈ Ω0, ∀t

knowing that we always have detF>0.
Moreover, if we place ourselves within the framework of the infinitesimal deformation hypothe-

sis, we can, as before, write up to order one that :

(detF)−1 ≈ 1− trDxu = 1−divx u

and thus obtain, always up to order one, that:

ρ(x, t) = ρ0(x)
(
1−divx u(x, t)

)
, ∀x ∈ Ω, ∀t

by assuming p ≈ x.

R These two terms are rarely used in practice; in the case of fluid media where mass conservation is often
used, a spatial version of this principle, which is more appropriate, is preferred.

Incompressibility

Incompressibility is directly expressed in terms of density as:

ρ
(
f(p, t), t

)
= ρ0(p), ∀p ∈ Ω0, ∀t

whether or not we are in the infinitesimal deformation hypothesis. Physically, each particle has its
density unchanged over time.

Summary 1.5 — Mass conservation. The local density ρ evolves over time as:

ρ
(
f(p, t), t

)
=

ρ0(p0)

detF(p, t)
, ∀p ∈ Ω0, ∀t

where ρ0 is the local density in the reference configuration.

1.5 Summary of important formulas

Deformation gradient tensor – Summary 1.1 page 13

dx = Fdp

F=
3

∑
n=1

∂x

∂ pn
⊗ in

F=
∂x

∂ pr
⊗ ir +

∂x

∂ pθ
⊗ iθ

pr
+

∂x

∂ pz
⊗ iz

Green-Lagrange strain tensor – Summary 1.2 page 21

E=
1
2

(

FTF− I

)
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∥dx∥2 −∥dp∥2

∥dp∥2 = 2
〈
Eep , ep

〉

cosα12x =

〈
Fep1 ,Fep2

〉

∥Fep1∥∥Fep2∥
=

cosα12p +2
〈
Eep1 , ep2

〉

√
〈
(2E+ I)ep1 , ep1

〉〈
(2E+ I)ep2 , ep2

〉

Infinitesimal strain tensor – Summary 1.3 page 27

–ε =
1
2

(

Dxu+(Dxu)T
)

–ε =
3

∑
n=1

∂u

∂xn
⊗S in

–ε =
∂u

∂ r
⊗S ir +

∂u

∂θ
⊗S

iθ

r
+

∂u

∂ z
⊗S iz

∆l
l0

=
〈

–εe, e
〉

∆α12

2
=
〈

–εe2 , e1
〉

Local volume change – Summary 1.4 page 35

dΩt = detFdΩ0

dV

V
= trDxu = divx u

Mass conservation – Summary 1.5 page 36

ρ =
ρ0

detF





2. Stresses

Stresses reflect the internal forces within the deformable media, by replacing the
mechanical action exerted by a volume of matter, which would then be removed
(virtually) from the domain, on the remaining part of the domain. These stresses
depend on the point under study and the orientation of the cut surface. The calculation
and optimization of stresses are essential in any design study of an object that must
resist mechanical stresses.

WHY STUDY STRESSES?

2.1 Fundamental principles of dynamics for a material domain

As in the previous chapter, we consider a material domain that we follow over time; we assume that
it currently occupies the domain Ωt , whose position and shape depend on the forces applied to the
domain, namely, as shown in Figure 2.1:

• a volume force density (or body force density) fV (x, t), which is applied at any point x within
the domain Ωt , and which is expressed in N/m3; these are typically forces that are exerted at
a distance (gravity force, Laplace force, . . . );

• a surface force density fS(x, t), which is applied at any point x of the boundary ∂Ωt of the
domain Ωt , and is expressed in N/m2; this time these are forces that are exerted by contact
(pressure force of a fluid on a wall, force at the contact surface between two solids, . . . ).

In both cases, it is indeed the current configuration Ωt that must be taken into account to apply the
fundamental principles of dynamics.

2.1.1 Conservation of momentum and angular momentum

At any given time, we consider all the particles constituting the domain Ωt , and for which we can
apply Newton’s laws.
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Figure 2.1: Force densities applied to a material domain.

Conservation of momentum

The (linear) momentum qk of a point particle k of mass mk and velocity vk is conventionally defined
as the product of one by the other: qk(t) = mkvk(t), ∀t. Newton’s second law then consists in
expressing that this quantity evolves at any given time as the sum of the forces Fk that are exerted
on the particle:

.

qk(t) = Fk(t), ∀t

with
.

qk(t) = mkak(t), where ak is the acceleration of the particle in question.
If we now consider a set S of N point particles of respective masses and velocities mk and vk,

the sum of the different equations allows us to establish that:

N

∑
k=1

.

qk(t) =
N

∑
k=1

Fk(t), ∀t

Among the total forces Fk exerted on the particles, we can consider in particular the forces Fi→ j and
F j→i which are exerted between two given particles i and j; under Newton’s third law (or the “action-
reaction” principle ), we can write that these two forces compensate each other: Fi→ j = −F j→i.
This allows us to eliminate in the previous sum all the forces that are exerted between two particles
of the set S , which makes it possible to write that:

N

∑
k=1

.

qk(t) =
N

∑
k=1

F
S→k(t) = F

S→S
(t), ∀t

by noting F
S→S

the sum of the forces exerted by the “outside” on the considered set. Finally, by
assuming that the momentum qS of the set S is the sum of the momentums of the particles that
constitute it, we then get:

.

qS (t) = F
S→S

(t), ∀t

Considering now that the particles are the elemental particles of the domain Ωt , we can go so
far as replacing the discrete sum by an integral, by defining the momentum of the material domain
as:

qΩ(t) =
∫

Ωt

ρ(x, t)v(x, t)dVx, ∀t

where v(x, t) is the velocity of the particle located in x at time t, and ρ(x, t) is its density. Similarly,
the forces exerted on Ω do correspond to the surface and volume densities mentioned above, which
must, therefore, be integrated respectively on the boundaries and in the interior of the domain Ωt .
The conservation of momentum is therefore written for the material domain as:

.

qΩ(t) =

.

︷ ︷
∫

Ωt

ρ(x, t)v(x, t)dVx =
∫

Ωt

fV (x, t)dVx +
∫

∂Ωt

fS(x, t)dSx, ∀t
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At first glance, the left-hand side seems difficult to calculate, since it is a question of differentiating
with respect to time an integral whose integration domain (Ωt) itself depends on time; but by using
results which are not detailed here, it is possible to transform the derivative of the momentum to
obtain finally:

∫

Ωt

ρ(x, t)a(x, t)dVx =
∫

Ωt

fV (x, t)dVx +
∫

∂Ωt

fS(x, t)dSx, ∀t

where a(x, t) is the acceleration of the particle located in x at time t.

Conservation of the angular momentum

A conservation equation similar to the previous one concerns the angular momentum, which plays
a similar role with respect to rotations to that played by the (amount of motion)linear) momentum
for translations; for a point particle of mass mk, velocity vk, and located in xk, we define the angular
momentum as the moment with respect to a fixed point O (in the considered reference frame) of the
momentum, namely: sk

xO
(t) = (xk −xO)∧qk(t), ∀t. Its derivative is then written as:

.

sk
xO
(t) =

.

︷ ︷

(xk −xO)∧
(
mkvk(t)

)
+(xk −xO)∧

.

qk(t)

Since O is fixed, we have

.

︷ ︷

(xk −xO) =
.

xk, which is the time derivative of the position of the particle
understudy, namely vk(t). So we have:

.

sk
xO
(t) = vk(t)∧mkvk(t)+(xk −xO)∧

.

qk(t) = (xk −xO)∧mkak(t)

By using the conservation of momentum, we finally end up with:

.

sk
xO
(t) = (xk −xO)∧Fk(t), ∀t

where Fk is the sum of the forces exerted on the particle.
As in the case of the conservation of the momentum, the previous expression can be transposed

to the case of a material domain, consisting of elemental particles of density ρ(x, t), for which we
write that:

.

sΩ
xO
(t)=

.

︷ ︷
∫

Ωt

(x−xO)∧ρ(x, t)v(x, t)dVx =
∫

Ωt

(x−xO)∧fV (x, t)dVx+
∫

∂Ωt

(x−xO)∧fS(x, t)dSx, ∀t

where sΩ
xO

is the angular momentum of Ω at point O. Once again, it is possible to transform the
previous expression as:

∫

Ωt

(x−xO)∧ρ(x, t)a(x, t)dVx =
∫

Ωt

(x−xO)∧ fV (x, t)dVx +
∫

∂Ωt

(x−xO)∧ fS(x, t)dSx, ∀t

R As in the previous chapter, we deliberately avoided the question of the reference frame, assuming
therefore for now that the movements are described in relation to a fixed observer without further detail.

Summary 2.1 — Fundamental principles of dynamics. Any set of particles, currently
occupying at time t the domain Ωt , and subjected to:

• volume force densities fV (x, t), ∀x ∈ Ωt ;
• surface force densities fS(x, t), ∀x ∈ ∂Ωt ;
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satisfies the principle of conservation of momentum:
∫

Ωt

ρ(x, t)a(x, t)dVx =
∫

Ωt

fV (x, t)dVx +
∫

∂Ωt

fS(x, t)dSx, ∀t

(also called fundamental principle of dynamics for forces), and the principle of conservation of
angular momentum, at any fixed point O:
∫

Ωt

(x−xO)∧ρ(x, t)a(x, t)dVx =
∫

Ωt

(x−xO)∧ fV (x, t)dVx +
∫

∂Ωt

(x−xO)∧ fS(x, t)dSx, ∀t

(also called fundamental principle of dynamics for moments). In addition, ρ(x, t) and a(x, t)
refer respectively to the density and acceleration, defined at any point x ∈ Ωt of the continuous
medium.

2.1.2 Actions

These two equations for the conservation of (linear) momentum and angular momentum allow
for highlighting what an action is in mechanics; it is derived from the volume and surface force
densities applied to the material domain.

Actions. An action is a cause acting on the movement or deformation of a material domain. To
describe all the actions applied to a material domain, we define classically:

• the resultant force of all the forces applied to the domain, which is given by the integral,
respectively on the boundary and in the interior of the domain, of the surface and volume
force densities taken into account:

Rext(t) =
∫

Ωt

fV (x, t)dVx +
∫

∂Ωt

fS(x, t)dSx, ∀t

• the moment at a given point O of all the forces applied to the domain, which is expressed
as the integral, respectively on the boundary and in the interior of the domain, of the
moments in O of these surface and volume force densities:

Mext
xO
(t) =

∫

Ωt

(x−xO)∧ fV (x, t)dVx +
∫

∂Ωt

(x−xO)∧ fS(x, t)dSx, ∀t

Similarly, an action is therefore characterized by a resultant force and a moment, which is
expressed at a point.

The expression of the moment naturally changes according to the chosen point: if we take the
example of a surface force density fS (contact force on a surface Σc for example), the moment Mc

xA

at an arbitrary point A can be expressed as:

Mc
xA

=
∫

Σc

(x−xA)∧ fS dSx

and, if we bring in another arbitrary point B, we get:

Mc
xA

=
∫

Σc

(x−xB +xB −xA)∧ fS dSx =
∫

Σc

(x−xB)∧ fS dSx +(xB −xA)∧
(∫

Σc

fS dSx

)

which allows us to introduce the resultant force Rc associated with this contact action, and to obtain
the classical relation to change the point of expression of the moment of an action:

Mc
xA

= Mc
xB
+(xB −xA)∧Rc
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R We deduce from the previous relation that it is very easy to express the conservation of angular
momentum at a point other than O; indeed, we can write using a point A that:
∫

Ωt

(x−xA +xA −xO)∧ρadVx =
∫

Ωt

(x−xA +xA −xO)∧ fV dVx +
∫

∂Ωt

(x−xA +xA −xO)∧ fS dSx

then, by using the conservation of momentum:
∫

Ωt

(xA −xO)∧ρadVx = (xA −xO)∧
∫

Ωt

ρadVx = (xA −xO)∧
(∫

Ωt

fV (x, t)dVx +
∫

∂Ωt

fS(x, t)dSx

)

we can simplify it like:
∫

Ωt

(x−xA)∧ρadVx =
∫

Ωt

(x−xA)∧ fV dVx +
∫

∂Ωt

(x−xA)∧ fS dSx

which corresponds to the expression of the conservation of angular momentum at point A.

Special actions. Two particular actions can be defined:
• Couple: an action whose resultant force is zero is called “couple”, or “pure moment”;

because of the relation to change its point of expression, the associated moment is then
independent of the point at which it is expressed, and is also called a couple.

• Pure force: an action for which there is at least one point where the moment is zero
is called a “pure force”; in this case, the moment is zero at all the points of the line
passing through this particular point, and of direction that of the resultant force. However
incorrectly, we often simply speak of force to designate a pure force.

■ Example 2.1 — Action of gravity. For example, the action of gravity is characterized by a volume force
density fV (x, t) =−ρ(x, t)gi3, ∀x ∈ Ωt , where i3 is a vertical (upward) unit vector. The associated resultant force is:

Rg =
∫

Ωt

−ρ(x, t)gi3 dVx =−
(∫

Ωt

ρ(x, t)dVx

)

gi3

considering that the acceleration of gravity g is uniform, hence finally:

Rg =−mΩgi3

The mass mΩ has thus been defined naturally as the integral on the volume of Ω of the density ρ(x, t): we notice that
according to the conservation principle set out in Paragraph 1.4.2, the mass does not depend on time, whereas the
density can evolve spatially over time within the material domain. Besides, the moment expressed at an arbitrary
point A is written as:

M
g
xA =

∫

Ωt

(x−xA)∧ (−ρ(x, t)gi3)dVx =

(∫

Ωt

ρ(x, t)xdVx −mΩxA

)

∧ (−gi3)

By introducing the barycenter C(t) of the spatial distribution of mass within Ωt , also classically known as the “center
of mass”, we find that:

M
g
xA = (xC(t)−xA)∧ (−mΩgi3) = (xC(t)−xA)∧Rg

which leads to the conclusion that the moment of the action of gravity, expressed at the center of mass xC(t) of the
domain Ωt , is zero, and therefore that the action of gravity is a pure force. ■

2.1.3 Static equilibrium

A domain is in static equilibrium if the positions of its different particles do not change over time:
we therefore have a zero acceleration (a(x, t) = 0, ∀x ∈ Ωt , ∀t), which allows us to write:

Rext(t) =
∫

Ωt

fV (x, t)dVx +
∫

∂Ωt

fS(x, t)dSx = 0, ∀t

Mext
xO
(t) =

∫

Ωt

(x−xO)∧ fV (x, t)dVx +
∫

∂Ωt

(x−xO)∧ fS(x, t)dSx = 0, ∀t
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In what follows we mention some particular classic cases of static equilibrium, detailing what
this implies for the actions exerted on the material domain.

Equilibrium of a material domain subjected to two pure forces

The simplest case that can be studied is that of a material domain subjected to two pure forces,
namely two actions of respective resultant forces R1 and R2 and of zero associated moments, at
points A1 and A2 respectively. In this case, the equilibrium equation allows for establishing that:

R1 +R2 = Rext = 0

with regard to the resultant forces, and, if we write the static equilibrium equation for the moments
at point A1:

(xA2 −xA1)∧R2 = Mext
xA1

= 0

This last relation then makes it possible to affirm that R2 (and consequently R1, which is opposed
to it) is collinear to the vector that connects the two points A1 and A2 (as depicted in Figure 2.2),
regardless the shape of the material domain.

Figure 2.2: Equilibrium of a material domain subjected to two pure forces.

Summary 2.2 — Static equlibrium of a material domain subjected to two pure forces.

We consider a domain Ω subjected to two pure forces, i.e. two actions of respective resultant
forces R1 and R2, and zero associated moments at points A1 and A2 respectively.

If Ω is in static equilibrium, then necessarily the two resultant forces R1 and R2 are opposed
and collinear to the vector connecting points A1 and A2.

Equilibrium of a material domain subjected to three pure forces

Another typical case is that of a material domain subjected to three pure forces, namely three
actions of respective resultant forces R1, R2 and R3 and zero associated moments, at points A1, A2

and A3 respectively. As in the case of two pure forces, the equilibrium equation concerning the
resultant forces merely allows for affirming that:

R1 +R2 +R3 = Rext = 0

which implies that the three resultant forces are coplanar. In addition, the equilibrium equations for
the moments expressed at point A1 gives:

(xA2 −xA1)∧R2 +(xA3 −xA1)∧R3 = Mext
xA1

= 0



2.1 Fundamental principles of dynamics for a material domain 45

which makes it possible to affirm that the plane containing the three resultant forces is actually the
plane defined by the three points A1, A2 and A3.

Several situations are then possible:
• if the two resultant forces R2 and R3 (when they are placed at A2 and A3 respectively)

intersect at a point I, the moments at that point of these two actions are then zero, and the
equilibrium equation in terms of moments at that point can be written as:

(xA1 −xI)∧R1 = Mext
xI

= 0

which implies that R1 is collinear to the vector connecting the points A1 and I, or, in other
words, that the three resultant forces are concurrent; moreover, the sum of the three resultant
forces is equal to zero, indicating that these latter form a triangle, often called “triangle of
forces”;

• if the two resultant forces R2 and R3 are parallel, but on different lines (when they are placed
respectively at A2 and A3), in this case, we can only say that the resultant force R3 is in the
same plane as the other two (and equal to the opposite of the sum of the two others);

• if the two resultant forces R2 and R3 are on the same line (when they are placed respectively
at A2 and A3), in this case, the moments at a point on this line of these two actions are equal
to zero, and we can, for example, write the equilibrium equation for the moments at A2 as:

(xA1 −xA2)∧R1 = Mext
xA2

= 0

which means that the resultant force R1 is also on the line in question, since R1 is, because
of the equilibrium equation for the forces, necessarily parallel to the other two (and equal to
the opposite of the sum of the other two).

The two first situations are depicted on Figure 2.3.

Figure 2.3: Equilibrium of a material domain subjected to three pure forces: case of three concurrent
forces (left) and case of three parallel forces (right).

Summary 2.3 — Static equilibrium of a material domain subjected to three pure forces.

We consider a domain Ω subjected to three pure forces, i.e. three actions of respective resultant
forces R1, R2 and R3, and zero associated moments at pointsA1, A2 and A3 respectively.

If Ω is in static equilibrium, then necessarily the three resultant forces R1, R2 and R3 have
their sum equal to zero, and can be (when placed respectively at A1, A2 and A3):

• concurrent;
• parallel, and, in this case, either coplanar or on the same line.
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2.2 Concept of stress

In the previous paragraph, we only took into account the actions exerted by the external environment
on the material domain Ω. In order for the latter to be able to withstand these loadings, there are
cohesion forces within the material, which are the interatomic binding forces, which depend on the
physicochemical composition of the material and its structure.

Of course, given the continuous medium that we are considering, we do not wish to go as far as
this level of detail here, but only to reflect the fact that these forces are very short-range, which
means that two particles far from each other in the domain exert negligible actions on each other. It
is, therefore, these forces exerted from one particle to the next, between the different particles that
constitute the domain under study, that we will model in the following.

2.2.1 Internal forces

We consider a material domain in its current configuration Ωt , and, within it, a sub-domain ω

that we also follow over time, so that it occupies the volume ωt at the current time, as shown in
Figure 2.4. This sub-domain ωt can be of any shape or size; moreover, it can have a common part
with the boundary ∂Ωt of the domain Ωt , or even split this latter into two separate parts.

Modeling

This sub-domain ωt is then subjected to the actions defined above (which are external to the domain
Ωt), but also to the action of the complementary sub-domain of ωt in Ωt , noted ω∗

t = Ωt\ωt , since
we assumed that the cohesion forces were exerted from close to close. It seems natural to assume
that these forces are exerted on the cut surface Σt that has been created by (mentally) isolating the
sub-domain ωt : since these are, so to speak, contact forces between two material domains, it is
assumed that they can be represented by a surface force density, hence the following definition.

Figure 2.4: Internal forces within a material domain.
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Stress vector. The surface force density T exerted on the isolated subdomain ωt , at any point
on the virtual cut surface Σt , by the complementary part ω∗

t , is called “stress vector” (or “surface
traction”):

T(x, t,n) = fΣ(x, t), ∀x ∈ Σt , and n ⊥ Σt in x

In the general case, this density depends on the point x and time, but also on the local orientation
of the surface at the point x, represented by the outer unit normal vector n in x, which is
perpendicular to the local tangent plane (also called “facet”).

R Assuming a priori that the stress vector depends on the local orientation of the cut surface reflects
the fact that, at a given point, the material is not loaded in the same way depending on the direction
considered.
On the other hand, one considers that the local curvature of the cut surface has no influence on the
description of the internal forces and that we can, therefore, be satisfied with the orientation of the facet,
given by the direction of the outer normal vector n of the domain, at the point under study.

Consideration

To determine the internal forces that have just been modelled, it is sufficient to use them in the
fundamental principles of dynamics which have been given in Paragraph 2.1: instead of considering
all the particles constituting the material domain Ωt , we limit ourselves to those defining the
particular subdomain ωt that we follow during its movement. For any sub-domain ωt strictly
contained in Ωt , we then simply obtain that:

∫

ωt

ρ(x, t)a(x, t)dVx =
∫

ωt

fV (x, t)dVx +
∫

∂ωt

T(x, t,n)dSx, ∀t

for the conservation of momentum, and:

∫

ωt

(x−xO)∧ρ(x, t)a(x, t)dVx =
∫

ωt

(x−xO)∧ fV (x, t)dVx +
∫

∂ωt

(x−xO)∧T(x, t,n)dSx, ∀t

for the conservation of angular momentum.
These relations highlight the fact that, if we know the stress vector T(x, t,n) at any point of the

cut surface Σt , we know the dynamics of the sub-domain ωt , which means that everything happens
as if we had cut Ωt and removed the complementary part ω∗

t without affecting the movement of
ωt . Of course, if, on the other hand, we choose to keep ω∗

t and remove ωt , we can apply the same
relations, this time taking the opposite normal vector on the facet, and thus taking the stress vector
T(x, t,−n).

Besides, we see that we defined internal forces which are, by nature, local since they depend
on the point under study, as can be the volume force densities exerted within the material domain.
Thus, whereas the two conservation principles applied to the complete material domain allow for
obtaining only six scalar equations, applying them to an arbitrary sub-domain underlines that the
distribution of internal forces plays an essential role in the evolution of the deformable medium
under study. This is indeed the approach adopted in the following to specify the properties of the
stress vector T(x, t,n).

R As seen in Example 1.3 (on page 5), the movement in space of an perfectly rigid body is characterized
by six parameters. We have just mentioned that the application of the two conservation principles to the
complete material domain allows for obtaining six independent scalar equations, which are therefore
sufficient to determine the evolution of the six parameters describing the motion of the solid over time.
It is therefore not necessary to focus on internal forces in the case of a perfectly rigid body since the
spatial distribution of these forces plays no role in the motion of this latter.
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2.2.2 Stress tensor

We will focus here on specifying the dependence of the stress vector T(x, t,n) on the orientation of
the normal vector n to the cut surface in x. To do this, we will apply the principle of conservation
of momentum to two sub-domains of very particular shapes.

Action-reaction principle

First, elemental sub-domains ωh
t , cylindrical in shape, are considered in the vicinity of a given point

xO, as shown in Figure 2.5.

Figure 2.5: Dynamic equilibrium of an elemental cylinder.

The conservation of momentum is naturally written as:

∫

ωh
t

(
ρ(x, t)a(x, t)− fV (x, t)

)
dVx =

∫

∂ωh
t

T(x, t,n)dSx, ∀t

Since the two integrands are continuous functions of space, the mean value theorem then allows
us to affirm that there is for each integral a point in the integration domain such that the value of
the integrand at this point is equal to the integral divided by the area or volume of the integration
domain. Thus, for the left-hand side, there is xV ∈ ωh

t such that:

∫

ωh
t

(
ρ(x, t)a(x, t)− fV (x, t)

)
dVx = πR2h

(
ρ(xV , t)a(xV , t)− fV (xV , t)

)

where R and h are the radius and height of the cylindrical domain respectively. In addition, the
right-hand side can be split into three surface integrals corresponding to the three sides of the
cylinder:

∫

∂ωh
t

T(x, t,n)dSx =
∫

∂Lωh
t

T(x, t,n)dSx +
∫

∂+ωh
t

T(x, t,n)dSx +
∫

∂−ωh
t

T(x, t,n)dSx

where ∂Lωh
t , ∂+ωh

t and ∂−ωh
t are the lateral, upper and lower surfaces of the cylinder respectively.

Applying the mean value theorem to each of these integrals, we conclude that there are xL ∈ ∂Lωh
t ,

x+ ∈ ∂+ωh
t and x− ∈ ∂−ωh

t such that:

∫

∂Lωh
t

T(x, t,n)dSx +
∫

∂+ωh
t

T(x, t,n)dSx +
∫

∂−ωh
t

T(x, t,n)dSx =2πRhT(xL, t,nL)

+πR2(T(x+, t,n)+T(x−, t,−n)
)

where nL, n et −n are the outer unit normal vectors on the surface of the cylinder, in xL, x+ and
x− respectively. If we use cylindrical coordinates to express that x+ = xO +(h/2)n+ r+ir(θ+)
and x− = xO − (h/2)n+ r−ir(θ−), then if the height h of the cylinder approaches zero, we finally
obtain that:

T(xO + r+ir(θ+), t,n)+T(xO + r−ir(θ−), t,−n) = 0
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Finally, assuming that the cylinder has a radius small enough to be able to consider at a last step
that xO + r+ir(θ+)≈ xO ≈ xO + r−ir(θ−), we finally get:

T(xO, t,−n) =−T(xO, t,n), ∀xO ∈ Ωt , ∀t

which constitutes the action-reaction principle.
Physically, this result can also be interpreted as a consequence of Newton’s third law: indeed,

on the cut surface which allows the sub-domain ωt to be isolated (mentally) from its complementary
part ω∗

t , the particles that interact exert forces on each other that are directly opposed. This allows
us to conclude that the stress vector is antisymmetric relatively to the normal vector n.

Linearity of the stress vector

In a second step, we consider elemental subdomains ωh
t , of tetrahedral shape, in the vicinity of a

given point xO; each of these tetrahedrons is right-angled, with three of its edges oriented along the
vectors of a basis (i1, i2, i3), as represented in Figure 2.6. By defining (n1,n2,n3) the components in
this basis of the outer normal vector n to the oblique face, and h the height of the tetrahedron along
this normal, we deduce the following geometric characteristics:

• the three edges parallel to the basis vectors have the following lengths:
h
nk

;

• the lateral faces ∂kωh
t , generated in particular by these edges, have as outer normal vectors

−ik, and respective areas:
h2

2nin j
, i ̸= j ̸= k;

• the oblique face ∂nωh
t , of outer normal vector n, has an area:

h2

2n1n2n3
;

• the tetrahedron has a volume:
h3

2n1n2n3
.

Figure 2.6: Dynamic equilibrium of an elemental tetrahedron (“Cauchy tetrahedron”).

As in the previous paragraph, the mean value theorem is applied to each integral present in the
expression of the conservation of momentum:

∫

ωh
t

(
ρ(x, t)a(x, t)− fV (x, t)

)
dVx =

∫

∂nωh
t

T(x, t,n)dSx +
3

∑
k=1

∫

∂kωh
t

T(x, t,−ik)dSx, ∀t

Thus, for the left-hand side, there is xV ∈ ωh
t such that:

∫

ωh
t

(
ρ(x, t)a(x, t)− fV (x, t)

)
dVx =

h3

2n1n2n3

(
ρ(xV , t)a(xV , t)− fV (xV , t)

)

while, for each integral of the right-hand side, there is xk ∈ ∂kωh
t (1 ≤ k ≤ 3) and xn ∈ ∂nωh

t such
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that:
∫

∂nωh
t

T(x, t,n)dSx =
h2

2n1n2n3
T(xn, t,n)

∫

∂kωh
t

T(x, t,−ik)dSx =
h2

2nin j
T(xk, t,−ik), i ̸= j ̸= k

When the height h approaches zero, we can see that the volume integral, in h3, becomes
negligible relatively to the sum of the surface integrals, which are all in h2. In addition, by
approximating xn ≈ xO ≈ xk (for 1 ≤ k ≤ 3), it is then determined that:

T(xO, t,n)+
3

∑
k=1

nkT(xO, t,−ik) = 0, ∀xO ∈ Ωt

or, by using the action-reaction principle:

T(xO, t,n) =
3

∑
k=1

nkT(xO, t, ik), ∀xO ∈ Ωt , ∀t

which means that the stress vector depends linearly on the outer unit normal vector n to the facet,
for the cut surface under study.

R The reasoning previously carried out on the elemental tetrahedron is, strictly speaking, not sufficient to
conclude, since, with such a geometry, it is not possible to have a normal vector n parallel to one of the
basis vectors ik. In this case, however, the established relation is still valid because we have n j =±1
and nk = 0 for k ̸= j.

Mathematical representation

In order to take advantage of the previous results, the following tensor is introduced.

Cauchy stress tensor. The Cauchy stress tensor is the tensor –σ defined as, using the vector
basis (i1, i2, i3):

–σ(x, t) =
3

∑
k=1

T(x, t, ik)⊗ ik, ∀x ∈ Ωt , ∀t

where T(x, t, ik) is the stress vector at the same point and at the same time, for a facet of outer
unit normal vector ik. The stress vector along a given normal vector n is then expressed as the
image of the vector n by the linear application represented by –σ:

T(x, t,n) = –σ(x, t)n =
3

∑
k=1

〈
n, ik

〉
T(x, t, ik), ∀x ∈ Ωt , ∀t, ∀n

Therefore, in this same vector basis, the components of the stress tensor are expressed simply as:

σmn =
〈

T(x, t, in), im
〉
, 1 ≤ m,n ≤ 3

Physically, this means that it is sufficient to know at point x and at time t the stress vectors on
three facets of linearly independent normal vectors to completely know the stress tensor, and,
consequently, the stress vector (at the same point and at the same time) relative to a facet of any
arbitrary normal vector n. Figure 2.7 summarizes this in the case where we choose the three
facets as three faces of an elemental cube centred in x. When there is no ambiguity, we simply
talk about stress tensor, without being more precise.
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Figure 2.7: Stress vector and components of the stress tensor on an elemental cube.

Given the above definition, and the proposed modelling for internal forces, the stresses are
similar to surface force densities, and are therefore expressed in N/m2 or Pa. In practice, since
the atmospheric pressure within a gas is in the order of one bar, or 0.1MPa, for most deformable
media that can be studied, we typically use the MPa (or N/mm2), with stresses that can evolve up
to several hundreds (or even thousands) of MPa without failure for the most resistant materials.
The following chapter will be devoted to the criteria used to assess this resistance.

■ Example 2.2 — Bar under the action of gravity: global approach. We consider the case of a
rectangular parallelepiped, the upper face of which is attached to a perfectly rigid and fixed support. This bar is in
static equilibrium when subjected to the action of gravity, as well as to the action of the support.

We define i3 as the unit vertical vector (which is oriented downwards for simplicity) so that the upper face is in
x3 = 0, and the lower face is in x3 = L, as shown in the figure below. We also assume that the density is uniform
throughout the beam.

This beam can then be virtually cut at a given cross-section Σt of altitude x3, so that the part ωt with altitudes
between x3 and L can be studied. This part is in static equilibrium thanks to the action of the complementary part ω∗

t
expressed on the plane Σt , which compensates the action of gravity. We then have, in terms of resultant forces:

∫

Σt

–σ(−i3)dSx +
∫

ωt

ρgi3 dVx = 0

where the stress vector on Σt is expressed using the outer unit normal vector −i3 at the cut plane.
If we make the simplifying assumption that the stress vector –σ(−i3) depends only on the altitude x3, and is

therefore uniform over the entire cut surface Σt (this will be justified in Example 2.9), we then arrive at:

–σ(−i3)A+ρg(L− x3)Ai3 = 0

where A is the area of the cross-section; thus, the resultant force of the internal forces is, as expected, exactly
compensating for the weight of the isolated part, of height L− x3. We finally deduce from this that:

–σ(x3)i3 = ρg(L− x3)i3, ∀x3 ∈ (0,L)

or, in terms of components expressed in the vector basis (i1, i2, i3) shown below:

σ13(x3) = 0 = σ23(x3), and σ33(x3) = ρg(L− x3), ∀x3 ∈ (0,L)
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The component σ33 being positive, this is referred to as a “tensile” stress, indicating that the stress tends to stretch
the material locally. This stress is maximum in x3 = 0, and corresponds to the surface force that the fixed support
must exert locally to maintain the beam in static equilibrium.

In addition, other cuts can be considered, for example, along a vertical plane of normal vector i1. Thus, for
the isolated part represented below, on the right, the outer unit normal vector is −i1, and the equilibrium of the
subdomain ωt establishes that: ∫

Σt

–σ(−i1)dSx = 0

since the action of the support in x3 = 0 exactly compensates for the action of gravity. Then, by isolating subdomains
similar to the previous one, but located between the planes of altitudes x3 and L, we can deduce that –σ(x3)i1 = 0,
∀x3 ∈ (0,L). Physically, we realize on the figure below (right) that everything happens as if we had two half-bars
suspended side by side: for each of them, it is the action of the support in x3 = 0 that compensates for the action of
gravity, and it is therefore not necessary for the two half-bars to exert an effort on each other. We will rigorously find
this result in Example 2.9.

In terms of components in the vector basis (i1, i2, i3), we then obtain that:

σ11(x3) = σ21(x3) = σ31(x3) = 0, ∀x3 ∈ (0,L)

Similarly, by considering cut planes of normal vector i2, we can establish that:

σ12(x3) = σ22(x3) = σ32(x3) = 0, ∀x3 ∈ (0,L)

The stress tensor is therefore finally expressed as:

–σ(x3) = ρg(L− x3)i3 ⊗ i3

or, in a vector basis (i1, i2, i3):

–σ(x3) = ρg(L− x3)





0 0 0
0 0 0
0 0 1





(i1,i2,i3)

which can also be represented using the elemental cube, defined in Figure 2.7, as below:

representation that justifies the qualification of this stress field as uniaxial. ■

R Figure 2.7 has shown that, on a facet, the direction of the stress vector is a priori arbitrary, and therefore
is not necessarily normal to that facet. In this respect, the concept of stress generalizes the concept of
pressure as it is found in a fluid at rest: indeed, in this latter case, the stress vector is normal to the
facet, taking the form T =−pn (where p is the pressure of the fluid, which depends on space and time a
priori), hence the following representation using the elemental cube. The stress tensor is then written
simply as –σ = −pI; given its proportionality to the identity tensor I, the stress tensor is then called

“isotropic”, or “spherical”.
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■ Example 2.3 — Archimedes’ principle: global approach. We will determine here the expression of the
“buoyancy” (or “buoyant force”) that a fluid exerts on a submerged solid. To do this, let us start by isolating in the
fluid a sub-domain ωt of arbitrary shape; the resulting (static) equilibrium equation is then written as:

∫

ωt

ρ f gi3 dVx +
∫

∂ωt

–σndSx = 0

where i3 is the vertical unit vector (oriented downwards), and ρ f the density of the fluid; since –σ =−pI, with p the
pressure of the fluid, we then have:

−
∫

∂ωt

pndSx =−
(∫

ωt

ρ f dVx

)

gi3 =−m f gi3

where m f is the mass of the fluid subdomain ωt . The action of the complementary part ω∗
t of ωt within Ωt then allows

for compensating for the action of gravity on the subdomain ωt , so that this latter could be in static equilibrium.
If we consider now a submerged solid, whose domain corresponds precisely to the fluid subdomain ωt under

study, we can assume, since the complementary part ω∗ is still at rest, that the submerged solid exerts on ω∗ the
same action as that exerted by ωt . Using the action-reaction principle, we can then conclude that the action of the
fluid subdomain ω∗

t , consisting of pressure forces, on the solid has a resultant force R f such that:

R f =−
∫

∂ωt

pndSx =−m f gi3

showing that the buoyant force exerted on the submerged solid is equal to the weight of the “displaced” fluid volume,
i.e. the weight corresponding to a volume |ωt | of fluid. ■

Symmetry property

So far, we have only used the conservation of momentum as a means of determining the stress tensor.
It is, of course, possible to obtain additional information from the application of the conservation of
angular momentum to any sub-domain ωt contained in the domain Ωt .

Figure 2.8: Equilibrium in terms of moments of an elemental rectangular parallelepiped.

Thus, if we consider an elemental sub-domain ωt in the form of a rectangular parallelepiped,
centered on a point xO, the conservation of angular momentum at point O allows us to write:

∫

ωt

(x−xO)∧ (ρa− fV )dVx =
∫

∂ωt

(x−xO)∧ –σndSx

As in the case of the dynamic equilibrium of the Cauchy tetrahedron, studied above, it can be
established that the volume integral can be neglected in the previous expression when compared to
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the surface integral, and that this latter can be approximated as:

0 =
∫

∂ωt

(x−xO)∧ –σndSx ≈
3

∑
k=1

∆xi ̸=k∆x j ̸=k∆xkik ∧ –σ(xO, t)ik

with the notations of Figure 2.8. By specifying in this equilibrium equation in terms of moments
the stress vectors using the components of –σ on the basis (i1, i2, i3), we find that:

3

∑
k=1

ik ∧ (σ1ki1 +σ2ki2 +σ3ki3) = 0

or, by expanding:
(σ32 −σ23)i1 +(σ13 −σ31)i2 +(σ21 −σ12)i3 = 0

which shows the symmetry of the stress tensor:

–σ(xO, t) = –σ(xO, t)
T, ∀xO ∈ Ωt , ∀t

Consequently, the existence of a tangential component (along a direction t) of the stress vector on
a facet of given orientation n necessarily implies, at the same point, a tangential component of
direction n and of the same intensity on a facet of orientation t. This stress field, referred to as
“pure shear”, is shown in Figure 2.9.

Figure 2.9: Pure shear.

R This result is a direct consequence of having modelled the actions within the domain as volume force
densities only. In some cases, this may be insufficient: in magneto-hydrodynamics, for example, where
ionized gas flows are coupled with magnetic effects, it is necessary to introduce volume torque densities
cV at each point of the domain, which results in the following relations between the components of –σ:

3

∑
k=1

ik ∧ (σ1ki1 +σ2ki2 +σ3ki3)+ cV = 0

at any point of the domain. The stress tensor is then not symmetrical.

Summary 2.4 — Cauchy stress tensor. The Cauchy stress tensor is a tensor –σ allowing us to
express, at any point of a material domain Ωt , and at any time, the internal forces on a facet of
unit normal vector n as the following stress vector:

T(x, t,n) = –σ(x, t)n, ∀x ∈ Ωt , ∀t

Using an orthonormal vector basis (i1, i2, i3) and the knowledge of these internal forces on three
facets of respective normal vectors ik, we can express this tensor as:

–σ(x, t) =
3

∑
k=1

T(x, t, ik)⊗ ik, ∀x ∈ Ωt , ∀t
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In addition, in the framework proposed in the course, the stress tensor is symmetrical:

–σ(x, t) = –σ(x, t)T, ∀x ∈ Ωt , ∀t

■ Example 2.4 — Spherical pressure tank: global approach. We consider here the case of a spherical
tank, with an inner radius R and a thickness e, similar to the illustration below, and whose function is to contain gas
under pressure. We try to estimate the stresses within the wall of this tank, in the typical case where its thickness is
much smaller than its radius (e ≪ R) and assuming that we can consider the gas pressure p as uniform.

We also assume that the action of gravity is negligible when compared to the action of internal pressure p so
that this latter can be considered to be the only action exerted on the tank (the action of the support on the tank being,
in fact, also neglected).

We propose to isolate the upper half-tank, obtained after cutting the structure along a horizontal plane passing
through its center; we then use the spherical vector basis (er,eϑ ,eφ ) associated with the coordinates (r,ϑ ,φ).

Given the spherical symmetry of the geometry and stresses (the fluid pressure is uniform and is normally exerted on
the inner surface of the tank), it can be assumed that the stress tensor components are independent of the angles ϑ
and φ , and that the vectors eϑ and eφ play similar roles. We can thus write the stress tensor as:

–σ(r,ϑ ,φ) =σrr(r)er(ϑ ,φ)⊗ er(ϑ ,φ)+σϑϑ (r)eϑ (ϑ ,φ)⊗ eϑ (ϑ ,φ)+σφφ (r)eφ (φ)⊗ eφ (φ)

+2σrϑ (r)er(ϑ ,φ)⊗S eϑ (ϑ ,φ)+2σrφ (r)er(ϑ ,φ)⊗S eφ (φ)

+2σϑφ (r)eϑ (ϑ ,φ)⊗S eφ (φ)

with σϑϑ (r) = σφφ (r) and σrϑ (r) = σrφ (r), ∀r, and where a⊗S b = (a⊗b+b⊗a)/2, ∀a,b.
Since the cut plane is (er,eφ ), the static equilibrium of the half tank is then written as:

0 =
∫

Σi∪Σe∪Σ0

–σndSx =
∫

Σi

–σ(−er)dSx +
∫

Σe

–σer dSx +
∫

Σ0

–σeϑ dSx

where Σi denotes the inner surface in contact with the pressurized fluid, Σe the outer surface under atmospheric
pressure (considered equal to zero), and Σ0 the cut surface, of outer unit normal vector eϑ . By approximating that the
stress vector on this latter is uniform given the very thin thickness of the wall of the tank, we can then establish that:

0 = p
∫

Σi

er dSx +A0 –σeϑ
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where A0 ≈ 2πRe is the area of the cut surface when assuming e ≪ R. Considering the symmetries, and the fact that,
on Σ0, eϑ =−iz (with iz the vertical unit vector, oriented upward), it is easy to show that:

∫

Σi

er dSx = πR2iz

where πR2 corresponds to what is called the projected area of Σi perpendicular to iz. We then find for e ≪ R that:

σϑϑ ≈ pR
2e

and that the shear stresses σrϑ are σϑφ are equal to zero in the wall.

In order to determine the radial stress, this time a circumferential part of the half tank can be isolated: ω
ρ
t =

{x = rer(ϑ ,φ)|R+ρ ≤ r ≤ R+ e, 0 ≤ ϑ ≤ π/2}, with 0 < ρ < e. The resulting static equilibrium equation gives
us:

0 =
∫

Σρ∪Σe∪Σ0

–σndSx =
∫

Σρ

–σ(−er)dSx +
∫

Σe

–σer dSx +
∫

Σ∗
0

–σeϑ dSx

where Σρ is the circumferential cut surface (r = R+ρ), and Σ∗
0 the diametrical cut surface. We then find that:

0 = π(R+ρ)2σrr(R+ρ)+A∗
0σϑϑ

with A∗
0 ≈ 2πR(e−ρ) when e ≪ R. We then get:

σrr(R+ρ)≈−p
R2(e−ρ)

e(R+ρ)2 ≈ p
ρ − e

e

i.e. a linear evolution of the radial stress in the thickness of the wall, when e ≪ R.
Finally, with some simplifying hypotheses, the following stress tensor is obtained in the case of a thin-walled

tank:

–σ(r,ϑ ,φ) = p
r−R− e

e
er(ϑ ,φ)⊗ er(ϑ ,φ)+

pR
2e

(
eϑ (ϑ ,φ)⊗ eϑ (ϑ ,φ)+ eφ (φ)⊗ eφ (φ)

)

It can also be seen that the circumferential stresses are predominant in the wall, since p = |σrr|max ≪ σϑϑ = σφφ =
pR
2e

when e ≪ R. ■

2.3 Local equilibrium equation

We have seen earlier how to model internal forces within a material domain, and that it was
possible to estimate them by applying the conservation of momentum to specific isolated sub-
domains. However, this estimation is complex in use when it comes to the global application of
the fundamental principles of dynamics because it requires choosing sub-domains to be isolated
in a relevant manner; this is why in practice we prefer to use as an alternative a local equilibrium
equation, verified at every point within the material domain.

2.3.1 Obtaining the equation

The starting point is, as before, to write the conservation of momentum for a sub-domain ωt of Ωt :

∫

ωt

(ρa− fV )dVx =
∫

∂ωt

–σndSx

where we have replaced the stress vector by its expression using the stress tensor –σ and the outer
unit normal vector n at any point on the boundary. In order to establish a local formulation, formally,
we would like to consider a sub-domain ωt around a point xO, whose size we would reduce in order
to be able to assimilate the volume integral to the value of the integrand at point xO. This requires
first transforming the surface integral on the boundary of ωt to a volume integral. To do this, we
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consider the scalar product of the previous equation by a constant and arbitrary vector c:
∫

ωt

〈
ρa− fV , c

〉
dVx =

∫

∂ωt

〈

–σn, c
〉

dSx

hence, by using the transposition property for the scalar product:
∫

ωt

〈
ρa− fV , c

〉
dVx =

∫

∂ωt

〈

–σTc,n
〉

dSx

Using the divergence theorem, given in Appendix B.2.2, we can then transform the surface integral
on the boundary of ωt into a volume integral on the subdomain:

∫

ωt

〈
ρa− fV , c

〉
dVx =

∫

ωt

divx( –σTc)dVx

where divx is the divergence operator for a vector expressed in the current configuration. Since
the integrand of the right-hand side is linear with respect to c, the following definition is then
introduced to pursue the reasoning.

Divergence of the stress tensor. The divergence of the stress tensor (expressed in the current
configuration) is the vector, noted divdivdivx –σ, defined as:

〈
divdivdivx –σ, c

〉
= divx( –σTc), ∀c constant

By successively choosing for c the vectors of a Cartesian basis (i1, i2, i3), we then obtain
the associated components of the divergence vector, using the well-known expression of the
divergence of a vector (recalled in Appendix B.1.1):

〈
divdivdivx –σ, im

〉
= divx( –σTim) =

3

∑
n=1

∂
〈

–σTim , in
〉

∂xn
=

3

∑
n=1

∂σmn

∂xn
, 1 ≤ m ≤ 3

where (x1,x2,x3) are the Cartesian coordinates, and σmn are the components of –σ, associated
with the vector basis (i1, i2, i3). Thus, in a Cartesian coordinate system, the components of the
divergence of the stress tensor are formally calculated as the (scalar) divergence of the row
vectors of the associated matrix.

In addition, this definition allows for defining what is known as the generalized divergence
theorem:

∫

∂ωt

–σ(x, t)n(x)dSt =
∫

ωt

divdivdivx –σ(x, t)dVt

where n(x) is the outer unit normal vector at any point on the boundary.

By substituting the previous definition in the dynamic equilibrium equation, we obtain:
∫

ωt

〈
ρa− fV −divdivdivx –σ, c

〉
dVx = 0

which is valid regardless of the sub-domain ωt isolated within the domain Ωt . We can then deduce
that the integrand then vanishes, and this, regardless the point under study:

ρ(x, t)a(x, t) = fV (x, t)+divdivdivx –σ(x, t), ∀x ∈ Ωt , ∀t

which is the local equilibrium equation verified by the stress tensor within the material domain.
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■ Example 2.5 — Bar under the action of gravity: verification of the local equilibrium equation.
Let us consider once again Example 2.2 for which we had determined, with some assumptions of common sense, the
stress tensor inside a bar suspended from a fixed support, and subjected to the action of gravity:

–σ(x3) = ρg(L− x3)i3 ⊗ i3

with the conventions in the figure below.

Now let us see if the local equilibrium equation is actually satisfied; for that, we calculate the divergence of the
tensor –σ in the Cartesian vector basis (i1, i2, i3), as the divergence of the row vectors of the matrix –σ:

〈
divdivdivx –σ, i1

〉
=

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
= 0

〈
divdivdivx –σ, i2

〉
=

∂σ21

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
= 0

〈
divdivdivx –σ, i3

〉
=

∂σ31

∂x1
+

∂σ32

∂x2
+

∂σ33

∂x3
=−ρg

We have thus:
divdivdivx –σ+ fV =−ρgi3 +ρgi3 = 0, ∀x

which effectively corresponds to a state of static equilibrium (a = 0). ■

R A physical interpretation of the divergence of the stress tensor is as follows. If we consider an elemental
rectangular parallelepiped ωt centered on a point x of coordinates (x1,x2,x3) in a Cartesian vector
basis (i1, i2, i3), the application of the generalized divergence theorem allows us to write that:

∫

ωt

divdivdivx –σdVt =
∫

∂ωt

–σndSt

or, for a rectangular parallelepiped whose dimensions 2∆xk along the respective directions ik become
very small:

8∆x1∆x2∆x3 divdivdivx –σ(x, t)≈
3

∑
k=1

4∆xi̸=k∆x j ̸=k

(

–σ(x+∆xkik, t)ik + –σ(x−∆xkik, t)(−ik)
)

which makes it possible to obtain, by defining, for 1 ≤ k ≤ 3, Tk± = –σ(x±∆xkik, t)ik as the stress vector
according to each vector of the basis:

divdivdivx –σ ≈
3

∑
k=1

1
2∆xk

(

Tk+−Tk−
)

as shown in the figure below; this shows the balance of the resultant forces of the surface force densities
on the faces of the parallelepiped.
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The divergence of the stress tensor thus represents the local balance of the internal surface forces
applied within the material to the faces of the elemental parallelepiped: this balance is expressed as the
variation of the stress vector according to the three directions associated with the Cartesian basis.

■ Example 2.6 — Archimedes’ principle: local approach. We can establish here, using the local
equilibrium equation, the result about the buoyancy force, which we had established in a global and intuitive way in
Example 2.3. Considering the form of the stress tensor for a fluid at rest, of density ρ f ( –σ =−pI, where p is the
fluid pressure), the local equilibrium equation allows us to establish that:

0 = fv +divdivdivx(−pI) = ρ f gi3 −
3

∑
k=1

∂ p
∂xk

ik

in the case of a Cartesian vector basis (i1, i2, i3), where i3 is a vertical (downward) unit vector. Noting ∇∇∇x p as the
gradient of p, we thus obtain:

∇∇∇x p = ρ f gi3

This result reflects the well-known fact that pressure increases linearly with depth (provided the density ρ f is uniform).

If we now consider a solid whose domain ωt is totally immersed in the fluid, the action exerted by this latter on
the solid is given by all the pressure forces on its boundary ∂ωt , of resultant force:

R f =−
∫

∂ωt

pndSx

where n is the outer normal vector at any point on the boundary of the solid. We then use Stokes’ theorem, obtained
in Appendix B.2.2, which allows us to write that:

∫

∂ωt

pndSx =
∫

ωt

∇∇∇x pdVx

The resultant force of the pressure forces applied to a closed surface is thus linked to the resultant force of the
gradient of these latter in the volume contained in the surface under study. Since the pressure evolution within the
fluid is not influenced by the presence of the solid, and therefore verifies the gradient vector established above, we
can simply write that:

R f =−
∫

ωt

∇∇∇x pdVx =−
∫

ωt

ρ f gi3 dVx =−m f gi3

where m f g is the weight corresponding to a volume |ωt | of fluid.

Besides, it is easy to generalize this result for a partially immersed solid; in this case, the emerged part is
subjected to the pressure of the surrounding air, which, according to the local equilibrium equation, also verifies a
gradient vector of similar shape. The previous approach then allows us to obtain in the same way that, in this case,
the buoyancy is equal to:

R f =−(m f +ma)gi3

where m f g is the weight corresponding to a volume of fluid equal to the volume of submerged solid, and mag is the
weight corresponding to an air volume equal to the volume of emerged solid. As, in practice for a liquid, mag ≪ m f g,
the buoyancy is finally expressed as:

R f ≈−m f gi3

hence the usual statement that the buoyancy is equal to the weight of displaced liquid. ■
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R As in the case of the conservation of (linear) momentum, it is possible to consider locally the principle
of conservation of angular momentum; for any sub-domain ωt contained in the domain Ωt , we can
write that, at a fixed point O:

∫

ωt

(x−xO)∧ (ρa− fV )dVx =
∫

∂ωt

(x−xO)∧ –σndSx

To transform the surface integral on the boundary, a variant of the divergence theorem, obtained in
Appendix B.2.2, is then used, in a Cartesian vector basis (i1, i2, i3):

∫

∂ωt

(x−xO)∧ –σndSx =
∫

ωt

(

(x−xO)∧divdivdivx –σ+
3

∑
n=1

in ∧ –σin

)

dVx

where we verify, according to the local equlibrium equation, that:

divdivdivx –σ = ρa− fV

After simplification, we then obtain:

∫

∂ωt

3

∑
n=1

in ∧ –σin dVx = 0

Knowing that this relationship is true regardless of the isolated material sub-domain ωt , the integrand is
actually equal to zero at any point in the domain Ωt . By developing the expressions of the stress vectors
using the components of –σ in the vector basis (i1, i2, i3), we get:

0 =
3

∑
n=1

in ∧
(

3

∑
m=1

σmnim

)

= ∑
1≤m<n≤3

(σnm −σmn)im ∧ in

which allows us to recover, as expected, the symmetry property of the stress tensor.

Tensor expressions of the divergence of the stress tensor

As with kinematics in the previous chapter, it is often more interesting to perform calculations
directly in a tensor way, rather than using tensor components in a given vector basis.

Thus, we have seen that the components of the divergence of the stress tensor in a Cartesian
vector basis (i1, i2, i3) can be expressed as:

〈
divdivdivx –σ, im

〉
=

3

∑
n=1

∂σmn

∂xn
, 1 ≤ m ≤ 3

where (x1,x2,x3) are the Cartesian coordinates associated with this basis. We deduce from this that,
since in is constant:

divdivdivx –σ =
3

∑
m=1

3

∑
n=1

∂σmn

∂xn
im =

3

∑
n=1

∂ (∑3
m=1 σmnim)

∂xn
=

3

∑
n=1

∂ –σin

∂xn

hence, finally, the intrinsic expression:

divdivdivx –σ =
3

∑
n=1

∂ –σ

∂xn
in

where –σ is expressed using tensor products, which may not involve the vectors of the basis (i1, i2, i3).

Besides, in the case of curved parts, it may be more interesting to use curvilinear coordinates
with an associated vector basis. In the case of a cylindrical geometry with an axis iz, we then
express the stress tensor as:

–σ(x, t) =σrr(r,θ ,z, t)ir(θ)⊗ ir(θ)+σθθ (r,θ ,z, t)iθ (θ)⊗ iθ (θ)+σzz(r,θ ,z, t)iz ⊗ iz

+2σrθ (r,θ ,z, t)ir(θ)⊗S iθ (θ)+2σrz(r,θ ,z, t)ir(θ)⊗S iz +2σθz(r,θ ,z, t)iθ (θ)⊗S iz
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considering its symmetry property. By applying the chain rule in the expression of the divergence
obtained above, we obtain:

divdivdivx –σ =
3

∑
n=1

(
∂ –σ

∂ r
∂ r
∂xn

+
∂ –σ

∂θ

∂θ

∂xn
+

∂ –σ

∂ z
∂ z
∂xn

)

in

where we can group together:

3

∑
n=1

∂ r
∂xn

in =∇∇∇xr,
3

∑
n=1

∂θ

∂xn
in =∇∇∇xθ ,

3

∑
n=1

∂ z
∂xn

in =∇∇∇xz

where ∇∇∇x refers to the gradient in the current configuration. As set out in Appendix B.3.2: ∇∇∇xr = ir,
∇∇∇xθ = iθ/r and ∇∇∇xz = iz, so we finally end up with:

divdivdivx –σ =
∂ –σ

∂ r
ir +

∂ –σ

∂θ

iθ

r
+

∂ –σ

∂ z
iz

which can be clarified in the form of the following vector expression:

divdivdivx –σ =

(
∂σrr

∂ r
+

1
r

∂σrθ

∂θ
+

∂σrz

∂ z
+

σrr −σθθ

r

)

ir

+

(
∂σrθ

∂ r
+

1
r

∂σθθ

∂θ
+

∂σθz

∂ z
+2

σrθ

r

)

iθ

+

(
∂σrz

∂ r
+

1
r

∂σθz

∂θ
+

∂σzz

∂ z
+

σrz

r

)

iz

since:
∂ ir

∂θ
(θ) = iθ (θ), and

∂ iθ

∂θ
(θ) =−ir(θ)

and since the derivative of a tensor product is similar to the derivative of a product:

∂ (a⊗b)

∂xk
=

(
∂a

∂xk

)

⊗b+a⊗
(

∂b

∂xk

)

, ∀a,b

In addition, the following example illustrates the calculation of the stress tensor divergence
when using a spherical vector basis.

■ Example 2.7 — Spherical pressure tank: verification of the local equilibrium equation. Here we
consider the case of a spherical tank under internal pressure: Example 2.4 had made it possible to determine the
stress tensor in the case of a thin-walled tank (e ≪ R):

–σ = p
r−R− e

e
er ⊗ er +

pR
2e

(eϑ ⊗ eϑ + eφ ⊗ eφ )

Using the results of Appendix B.3.3, we can establish that the divergence of the stress tensor is written, in spherical
coordinates, as:

divdivdivx –σ =
∂ –σ

∂ r
er +

∂ –σ

∂ϑ

eϑ

r
+

∂ –σ

∂φ

eφ

r sinϑ

or, in terms of components:

divdivdivx –σ =

(
∂σrr

∂ r
+

1
r

∂σrϑ

∂ϑ
+

1
r sinϑ

∂σrφ

∂φ
+

2σrr −σϑϑ −σφφ +σrϑ cotϑ

r

)

er

+

(
∂σrϑ

∂ r
+

1
r

∂σϑϑ

∂ϑ
+

1
r sinϑ

∂σϑφ

∂φ
+

(σϑϑ −σφφ )cotϑ +3σrϑ

r

)

eϑ

+

(
∂σrφ

∂ r
+

1
r

∂σϑφ

∂ϑ
+

1
r sinϑ

∂σφφ

∂φ
+

3σrφ +2σϑφ cotϑ

r

)

eφ
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In this specific case, we establish that:

divdivdivx –σ ≈
(

p
e
+2p

r−R− e
er

− p
R
er

)

er ≈
p

eR

(
3(r−R)−2e

)
er

which is a result that can be considered negligible, since it is in the order of p/R.
The exact solution to this problem is naturally more complex; by designating Ri and Re as the inner and outer

radii respectively, it is actually possible to establish that:

–σ =
pR3

i

R3
e −R3

i

(

1−
(Re

r

)3
)

er ⊗ er +
pR3

i

R3
e −R3

i

(

1+
1
2

(Re

r

)3
)

(eϑ ⊗ eϑ + eφ ⊗ eφ )

and we can easily see that this expression satisfies divdivdivx –σ = 0 exactly. ■

R From above, we can make two practical observations:

• deformable bodies resist forces by developing stress gradients if they are straight, as in the case
of Example 2.5 dealing with the bar subjected to the action of gravity;

• when their geometry is curved, deformable bodies can resist forces by arching, simply from the
stresses themselves; Example 2.7 of the spherical tank under internal pressure shows, in the case
where the wall thickness is very small, that the circumferential, constant stresses are predominant
over the radial stress in the thickness: |σrr|max ≪ σϑϑ = σφφ .

Summary 2.5 — Local equilibrium equation. The stress tensor –σ satisfies, at any point within
a material domain Ωt , and at any time t, the following local equilibrium equation:

ρ(x, t)a(x, t) = fV (x, t)+divdivdivx –σ(x, t), ∀x ∈ Ωt , ∀t

where a is the acceleration of the particle located in x, of density ρ .
In a Cartesian vector basis (i1, i2, i3) associated with the coordinates (x1,x2,x3), this equation

is expressed as:

ρ(x1,x2,x3, t)a(x1,x2,x3, t) = fV (x1,x2,x3, t)+
3

∑
k=1

∂ –σ

∂xk
(x1,x2,x3, t)ik

while, in a cylindrical vector basis (ir(θ), iθ (θ), iz) associated with the coordinates (r,θ ,z), it is
possible to write that:

ρ(r,θ ,z, t)a(r,θ ,z, t) = fV (r,θ ,z, t)+
∂ –σ

∂ r
(r,θ ,z, t)ir(θ)+

∂ –σ

∂θ
(r,θ ,z, t)

iθ (θ)

r
+

∂ –σ

∂ z
(r,θ ,z, t)iz

2.3.2 Solving the equation

The local equilibrium equation that has just been established is a first-order partial differential
equation; integration constants are then required to solve it.

Conditions on the external boundary

In general, the only information available and consistent with the stress tensor are the surface
force densities fS that can be applied on the external boundary of the domain Ωt . By isolating a
sub-domain ωt whose part of the boundary is the same as the boundary of the domain (as shown in
Figure 2.10), we can express that the stress vector on this common boundary must be equal to the
imposed surface force density: this is equivalent to extend (by continuity) to the external boundary
the stress tensor by writing that:

–σ(x, t)n(x) = fS(x, t), ∀x ∈ ∂Ωt , ∀t
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Figure 2.10: Imposed surface force density on the external boundary.

where n(x) is the outer unit normal vector at point x of the external boundary.
When we are in the presence of a solid material domain, whose surface Σ is in contact with air

at atmospheric pressure, it is usual to write a so-called “free surface” condition, since we write that:
–σ(x, t)n(x) = 0, ∀x ∈ Σ, ∀t

Indeed, the material domain in its initial configuration Ω0 is already subjected to the atmospheric
pressure of surrounding air. In this configuration, it is usual to consider that the stress field within
the domain is equal to zero since it will be negligible when compared to the other mechanical
loadings to which the domain will be subjected (remember that an atmospheric pressure of one bar
corresponds to a surface stress of 0.1MPa).

However, when we are interested in stresses within a fluid domain, in contact with air, we need
to effectively take atmospheric pressure into account since the previous reasoning has no reason to
be valid.

■ Example 2.8 — Pressure in a fluid at rest. A direct and trivial application of above is the determination
of the pressure within a fluid at rest (or “hydrostatic” pressure). Indeed, as established in Example 2.6, the local
equilibrium equation, into which the form of the stress tensor for a fluid at rest ( –σ =−pI) is injected, allows us to
write directly that:

0 = fV +divdivdivx(−pI) = ρ f gi3 −∇∇∇x p

where i3 is a vertical (downward) unit vector, and ρ f refers to the density of the fluid.
Considering that the boundary x3 = 0 corresponds to the free surface in contact with air, whose pressure is

assumed to be constant and equal to pa, we find that the pressure is a function of the depth x3:

p(x3) = pa +g
∫ x3

0
ρ f (ζ )dζ

which, in the case of a uniform density fluid ρ f , leads to :

p(x3) = pa +ρ f gx3

which is the well-known expression of hydrostatic pressure that changes linearly with depth. ■

R Even if the surface force boundary conditions allow for solving the local equilibrium equation, its
solution only provides three scalar relations for the six components of the stress tensor. Additional
relations will be required to fully solve the problem under study unless some simplifying assumptions
can be made (e.g. symmetry properties, as in Example 2.4), which will be the subject of Chapter 4.

■ Example 2.9 — Bar under the action of gravity: local approach. Here we consider once again the case
of the bar suspended from a fixed support, and subjected to the action of gravity. Example 2.5 had allowed us to
verify that the following stress tensor:

–σ(x3) = ρg(L− x3)i3 ⊗ i3

satisfied the local equilibrium equation. We will now consider the boundary conditions. The surface force densities
are known on the four lateral faces and on the lower side (in x3 = L): in fact, they are equal to zero since these faces
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are free surfaces, and we verify on the one hand that:

–σ(±i1) =±ρg(L− x3)
〈

i3 , i1
〉
i3 = 0 =±ρg(L− x3)

〈
i3 , i2

〉
i3 = –σ(±i2)

at any point on the lateral surfaces, and, on the other hand, that:

–σ(x3=L)i3 = ρg(L−L)i3 = 0

The solution proposed in Example 2.2 therefore satisfies all the equations of the problem.
Describing the boundary conditions correctly is of course essential to get the solution; thus, if we consider that

the bar is now placed on a fixed support, rather than being suspended, the condition on the upper surface (in x3 = 0)
becomes a free surface condition:

–σ(x3=0)(−i3) = 0

while there are no more known surface force conditions on the lower surface (in x3 = L). Since the local equilibrium
equation remains unchanged, the associated solution is found as:

–σ(x3) =−ρgx3i3 ⊗ i3

Thus, if formally, the two solutions have the same gradient (due to the same local equilibrium equation), in the
case of the suspended bar, we have a tensile state (σ33 > 0), while the laid bar is in compression (σ33 < 0), as shown
above. ■

Conditions on an internal interface

When several material domains are studied, the local equilibrium equation is to be written separately
within each domain. Moreover, the surface force densities are not known on the boundaries which
are common to the two domains; on these interfaces, it is, therefore, necessary to be able to establish
relations of another nature.

To do this, it is sufficient to express the reciprocity of the stress vector (i.e. action-reaction
principle) at each point of the interface Σi between the two domains Ωk and Ωl:

–σ k (x, t)nk(x)+ –σ l (x, t)nl(x) = 0, ∀x ∈ Σi, ∀t

where –σ k and –σ l refer to the stress tensor defined in Ωk and Ωl respectively. Since nk(x) and nl(x)
are, in x ∈ Σi, the outer normal vectors of Ωk and Ωl respectively (as represented in Figure 2.11),
they are necessarily opposed since they are defined on the common tangent plane at the point under
study, which allows us to write:

–σ k (x, t)n(x) = –σ l (x, t)n(x), ∀x ∈ Σi, ∀t

where n(x) refers to either of the two normal vectors defined above. For obvious reasons, we then
speak of “continuity of the stress vector” at the interface between the two domains.

! The previous result only reflects the continuity of the stress vector at the interface and not
that of the complete stress tensor: only three of the six components are thus concerned. The
following example highlights this important point.
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Figure 2.11: Surface force conditions on an internal interface.

■ Example 2.10 — Spherical pressure tank: local approach. We consider here the case of a spherical
internal pressure tank, for which we had observed in Example 2.7 that the solution proposed in Example 2.4:

–σ = p
r−R− e

e
er ⊗ er +

pR
2e

(eϑ ⊗ eϑ + eφ ⊗ eφ )

in case the thickness was very small (e ≪ R), satisfied the local equilibrium equation.
With respect to boundary conditions, the tank is subjected to the fluid pressure p on its inner surface, and to

atmospheric pressure (considered to be equal to zero) on its outer surface. We can then see that the stress vectors on
these two surfaces are respectively:

–σ(r=R)(−er) =−p
R−R− e

e
er = per

and

–σ(r=R+e)er = p
R+ e−R− e

e
er = 0

the last condition effectively reflecting the fact that the outer surface is free of forces, since it is only subjected to
atmospheric pressure.

In addition, the condition on the inner surface (in r = R) can be analyzed a little more precisely. The fluid being
a continuous medium, the associated stress tensor is –σ f =−pI. The condition in r = R can thus be interpreted as a
continuity condition of the stress vector at the interface between the two material domains: it is indeed verified that,
on this interface:

–σ(r=R)er =−per = –σ
f
(r=R)er

This example also illustrates well the fact that there is no reason for all the stress tensor components to be continuous
through the interface; indeed, we have:

–σ(r=R)eϑ =
pR
2e

eϑ ̸=−peϑ = –σ
f
(r=R)eϑ

The tank thus presents circumferential tensile stresses, while the fluid is compressed. ■

Summary 2.6 — Boundary conditions for the stress vector. At any point on the external
boundary of a material domain Ωt , the stress vector is equal to the applied surface force density
fS :

–σ(x, t)n(x) = fS(x, t), ∀x ∈ ∂Ωt , ∀t
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where n(x) is the outer unit normal vector at point x.
In the case of a boundary between two different material domains k and l, we express the

continuity of the stress vector at this interface as:

–σ k (x, t)n(x) = –σ l (x, t)n(x), ∀x ∈ Σi, ∀t

where n(x) is the unit normal vector (whatever the sense) at point x.

2.4 Summary of important formulas

Fundamental principles of dynamics – Summary 2.1 page 41
∫

Ωt

ρadVx =
∫

Ωt

fV dVx +
∫

∂Ωt

fS dSx

∫

Ωt

(x−xO)∧ρadVx =
∫

Ωt

(x−xO)∧ fV dVx +
∫

∂Ωt

(x−xO)∧ fS dSx

Cauchy stress tensor – Summary 2.4 page 54

T(n) = –σn

–σ =
3

∑
k=1

T(ik)⊗ ik

–σ = –σT

Local equilibrium equation – Summary 2.5 page 62

ρa = fV +divdivdivx –σ

divdivdivx –σ =
3

∑
k=1

∂ –σ

∂xk
ik

divdivdivx –σ =
∂ –σ

∂ r
ir +

∂ –σ

∂θ

iθ

r
+

∂ –σ

∂ z
iz

Boundary conditions for the stress vector – Summary 2.6 page 65

–σn = fS

–σ k n = –σ l n



3. Strength criteria

The internal forces within matter can be modelled as a stress tensor which, being
symmetrical, has six independent scalar components varying a priori at each point
of the studied domain and at any given time. To know if, locally, the material can
resist these stresses, one has to be able to deduce from this tensor a scalar “indicator”,
which can be compared to a threshold value characteristic of the material’s strength.
This indicator should be linked in particular to the nature and physical structure of this
material.

WHY STUDY STRENGTH CRITERIA?

3.1 Mechanical testing of materials

The simplest way to study the behaviour of a material, and in particular its mechanical strength,
is to set up experimental tests, thus allowing them to be tested under specific stress fields. Given
the notion of stress introduced in the previous chapter, it is easy to understand that it is difficult to
experimentally measure a stress field within a mechanical part, unlike strains whose measurement
is straightforward and benefits from recent advances in imaging equipment and associated image
processing software. Thus, the aim is generally to impose a state of uniaxial stress (i.e. having a
single scalar component) and, if possible, even homogeneous stress in the area of interest of the
tested part, in order to be able to determine this stress state with the only measure of the forces
globally exerted on the part, i.e., generally a resultant force and/or a moment characterizing the
action of the test machine on the part.

From this point of view, the most traditional uniaxial test is the simple “tensile test”, which
we will describe in detail in the following paragraph, and which makes it possible to obtain a
homogeneous stress state in the area of interest of the tested part. A multitude of other tests can of
course be considered: for example, the “torsion test” (mentioned in Example 5.1, on page 120),
or the “bending test” (detailed in Example 6.14, on page 201), for which the stress field changes
linearly within the part. Finally, in some cases, it may be necessary to set up multiaxial tests to
highlight certain phenomena or behaviours that uniaxial tests do not allow to observe.
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3.1.1 Tensile test

The principle of the tensile test is to obtain a homogeneous uniaxial stress state in a specific area
of the tested part: –σ = σeee⊗ e. For this purpose, the parts, which are called “specimens”, are
elongated in shape and have three distinct parts, visible in Figure 3.1:

• a thin, elongated central part, called “reduced section” or “gauge section” because it is there
that the assumption of homogeneity of the stress state will be adopted;

• two parts at the ends, called “shoulders” or “grip section”, which are wider than the gauge
section, and which are intended for being readily gripped in the test machine;

• a “fillet” connecting these sections, which serve as transition zones for geometry, and whose
importance will be justified in Paragraph 3.3.2.

Figure 3.1: Test machine (left) and typical tensile specimens (right).

Determination of the stress state

This stress state is obtained using a test machine, represented in Figure 3.1, whose role is to apply to
both ends of the specimen (at the level of the shoulders) two actions characterized by two resultant
forces R0 =−RL, opposite and in the direction of the longitudinal axis e of the specimen, assumed
vertical and oriented upward.

Figure 3.2: Isolation of a half specimen

If we virtually cut the specimen into two symmetrical halves (as shown in Figure 3.2), and if
we neglect the action of gravity, the upper half is in static equilibrium, being subjected to the action
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of the machine, of resultant force RL, and to the action of the lower half, of resultant force:

R =
∫

Σ

–σ(−e)dSx =−
∫

Σ
σeeedSx

where Σ is the horizontal median cut plane of the specimen. Assuming that the stress state is
homogeneous in the gauge section of the specimen, it is so at any point in the cross-section Σ of
area A, and we can directly write using the static equilibrium of the upper half that:

RL = σeeAe

which therefore allows us to obtain the longitudinal stress from the measurement of the force
exerted on the specimen, and the area of its cross-section: σee =

∥
∥RL

∥
∥/A.

In practice, the specimen is fixed on one side to a fixed part of the test machine, and on the
other side to a moving part called the “cross head”, whose displacement is measured. It is then
possible to control the test in terms of stress (via the measurement of the resultant force exerted) or
in terms of strain (by controlling the movement of the cross head).

One way to justify a posteriori the homogeneity of the longitudinal stress in the gauge section
may be to use numerical simulation to evaluate the stress field within the specimen. To do this, we
need to question the precise nature of the forces applied locally to the specimen, since we saw in
Paragraph 2.3.2 that the problem required the knowledge of the stress vectors on the mechanically
loaded parts of the boundary. We then propose to test three different boundary conditions, but all
three of which have the same resultant force:

1. surface force densities normally applied to the end surfaces of the two specimen shoulders,
and assumed to be uniform;

2. surface force densities applied tangentially to the lateral surfaces of the two specimen
shoulders, and assumed to be uniform;

3. an “extreme” case where the force application area is reduced to a point at each end (which
is actually possible in the case of a numerical simulation).

Figure 3.3: Uniaxial stress states σee obtained by numerical simulation for the three studied loading
cases: case 1 (centre), case 2 (left), and case 3 (right).
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The uniaxial stress state associated with each of these cases is represented in Figure 3.3, in the
case of a material behaviour called “elastic”: this stress state is homogeneous within the gauge
section for each case, and the associated values are the same, despite the diversity of the forces
applied locally. On the other hand, we see that the stress fields are potentially very different in
the shoulders of the specimen, which justifies the interest of having chosen an elongated shape
for the latter; indeed, what one calls “Saint-Venant’s principle” allows for justifying that the local
distribution of the applied forces has only little influence at “high” distance, provided that these
forces have identical overall characteristics, namely the same resultant forces and same moments
(equal to zero here in the case of a simple tensile test). This principle will be explained in more
detail in Paragraph 5.2.3.

Tensile curves

In addition to the longitudinal stress σee, the longitudinal strain εee =
〈

–εe, e
〉

is also measured on
the gauge section, and is also homogeneous in the case of the simple tensile test. This then makes it
possible to draw a so-called “tensile curve”, characteristic of the material’s behaviour until its final
failure.

For most materials, two regions are corresponding to very different behaviours, visible in
Figure 3.4 (left curve):

1. a reversible behaviour, insofar as, as soon as the forces applied to the specimen are removed,
it returns to its original, undeformed shape: this corresponds to a behaviour known as
“elasticity”, which is observed for moderate deformations and is very often characterized by
a linear evolution of the uniaxial stress as a function of the longitudinal strain;

2. above a certain stress threshold (called “yield strength”), a “plastic” behaviour, which results
in irreversible deformations: after removal of the applied forces, the specimen does not return
to its original shape, which means that some deformation remains at zero stress: we speak of
“plasticity”.

Materials presenting these two regions are called “ductile”; on the other hand, some materials have
a very limited or even non-existent plastic region, as shown on the right-hand curve of Figure 3.4:
they are “fragile” or “brittle” materials.

Figure 3.4: Tensile curves for ductile materials (left) and brittle materials (right).

These two regions (elasticity and plasticity) correspond to very different phenomena at the
atomic scale, which can be summarized very briefly as follows:

• the elastic region corresponds to a deformation of the network of atoms, in which they leave
their equilibrium position corresponding to the minimum of the atomic interaction potential,
and are then subjected to a restoring force that tends to make them return to this optimal
position; this explains the reversibility of elasticity;
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• above a certain threshold, locally the bonds between atoms may break, but some of these
atoms recreate bonds with neighbouring atoms, creating a deformation that is then irreversible,
because (unless a contrary effort is exerted exceeding the threshold again) the suppression of
stresses leaves the atoms with their new neighbours.

Figure 3.5 (top) summarizes the description of these two phenomena, in the case of a network of
atoms subjected to shear.

Figure 3.5: Principle of elastic and plastic deformations (top) and movement of a dislocation
(bottom).

In practice, however, it is not possible to have the slip of atomic planes by simultaneous
rupture of all the interatomic bonds separating the two planes concerned, because this would
require much higher levels of stress than what is observed experimentally. This slip is in fact
obtained by the “propagation” of defects, generally linear discontinuities of the atomic structure,
called “dislocations”: Figure 3.5 (below) illustrates how the slip between two atomic planes occurs
gradually, by successive breaks in the bonds between the atoms surrounding the defect.

R We did not insist above, when determining the longitudinal stress as a function of the force applied by
the test machine, on measuring the area of the section. Indeed, during the tensile test, it is observed that
this area evolves significantly, especially in the case of a ductile material: a phenomenon known as

“necking” (whose apparition is identified on the left curve of Figure 3.4) corresponds to the localized and
rapid reduction of the cross-section area of the specimen, finally leading to the failure at this zone.

As the curve drawn in Figure 3.4 does not take into account the reduction of this area (we speak then of
“engineering” curve), there is an increase in strain for a stress σ c

ee that appears to decrease until failure;
in fact, if the actual area is taken into account, the actual stress σ r

ee (or “true” stress) increases until
failure, as illustrated in the figure below.
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In practice, it is often sufficient to consider the engineering stress, bearing in mind that the actual failure
stress is underestimated, which is a safety factor.

Orders of magnitude

Material Yield strength (MPa) Tensile strength (MPa)

wood (⊥ fibres) 0.5–1.5
concrete 2–5
rubber 15

high density polyethylene 26–33 35–40
wood (// fibres) 10–40

composites (⊥ fibres) 30–50
glass 30–60
nylon 45 75
bone 104–121 130

copper 70 220
aluminum alloy 240–400 300–500

brass 200 550
tungsten 940 1500

composites (// fibres) 1000–1800
sapphire 400 1900

steel 130–2500 200–2500
diamond 1600 2800

Table 3.1: Typical values for various materials of yield strength and tensile strength.

Table 3.1 lists, for various common materials, the typical values of their tensile strength, as
well as their yield strength in the case of ductile materials. For some material families, such as
metal alloys, orders of magnitude have wide variation ranges, as the properties can be modulated in
various ways during material elaboration (addition elements, heat treatments, . . . ). Besides, some
materials, such as long-fibre composites, do not have the same characteristics depending on whether
they are loaded parallel or perpendicular to the fibres. Finally, parameters such as temperature can
influence the observed values.

3.1.2 Types of material failure

Characterization tests, such as the tensile test just analyzed, therefore provide a threshold value
associated with material failure. However, the question now arises as to how to use this threshold
value in the case of an actual structure, of potentially complex shape, and subjected to an arbitrary
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loading. Besides, the multiplicity of failure modalities that can be observed in the case of the
tensile test shows that there is a multitude of local mechanisms at the microscopic level that must
be understood before this transposition can be carried out.

In a deliberately simplistic manner, we consider here only two types of material failure, related
to the two generic behaviours shown in Figure 3.4, and whose microscopic mechanisms are
very different (this, however, does not exclude the possibility of coexistence of these two types).
The associated fracture surfaces, obtained during a tensile test, are represented schematically in
Figure 3.4, and are briefly justified in what follows.

Figure 3.6: Typical fracture surfaces for a brittle material (a) and a ductile material (b)-(c).

Brittle failure

This type of failure occurs for materials in which it is not possible to have significant plastic
deformation levels, such as ceramics, or, at low temperatures, metals and some polymers. Once a
crack has been initiated, it does not require much energy to propagate, resulting in a sudden failure,
as in the case of glass, for example, without necessarily significantly increasing the applied stresses.

In the case of materials with a so-called crystalline structure (characterized by highly ordered
stacks of atoms), the creation of the crack results from a failure of the atomic bonds between two
weakly bound crystalline planes, which are thus separated by forces applied perpendicularly to
them: we speak then of “cleavage” failure. As the latter creates a multitude of small, perfectly
faceted surfaces, the fracture surface can have a shiny appearance, as in the case of cast iron shown
in Figure 3.7.

Figure 3.7: Fracture surfaces in the case of cast iron (left) and glass (right).

For amorphous materials (i.e. with no crystalline structure), the absence of characteristic



74 Chapter 3. Strength criteria

separation planes results in the failure being carried out according to a curved and smooth breakage
surface, as in the case of glass shown in Figure 3.7, propagating perpendicular to the applied force.
We call this a “conchoidal” fracture.

Ductile failure

Unlike the previous case, this type of failure occurs with the presence of a significant amount of
plastic deformation, visible in particular in the necking phenomenon that was observed during the
tensile test. For particularly pure metals, this deformation can go as far as separating the specimen
into two halves with sharpened ends (case (c) shown in Figure 3.6).

However, most metals used in the industry contain particles (such as addition elements in the
case of alloys), and at the heart of plastically deformed areas, microcracks form at the interface
between these particles and the surrounding metal. The movement of the dislocations, obtained by
the slip of certain crystalline planes as described above, tends to transform these microcracks into
small cavities of increasing sizes which finally coalesce in the necking zone to form the cracks that
will cause the material to break. All these steps are summarized in Figure 3.8.

Figure 3.8: Steps of the ductile failure: necking, then creation, and coalescence of the micro-cavities,
and finally cup-and-cone shaped cracking of the specimen.

The propagation of cracks is, therefore, less abrupt than in the brittle case, because there is a
need for energy (and therefore an increasing force) to increase the crack length (the energy dissipated
during a tensile test, directly estimable as the area under the tensile curve, is very different for the
two behaviours presented in Figure 3.4). The propagation of these cracks tends to occur in the slip
directions of the crystalline planes involved in the movement of the dislocations, especially as one
approaches the boundaries of the specimen, which explains the generally observed “cup-and-cone”
shape of the fracture surface, as in the case of the two metallic materials in Figure 3.9. Besides, the
“dark” appearance of the fracture surface still bears traces of the cavities that formed during the
rupture, which appear in the form of “cupules”, mainly in the central zone of the specimen.

R Rather than precisely characterizing the instant of failure, the purpose of the strength criteria presented
below is to provide dimensional information regarding the structure to be designed.

Thus, in the case of ductile materials, it is often considered that the threshold corresponding to the
plastic region (i.e. the yield strength) is the criterion that should be used, rather than the extreme value
for which the failure occurs: indeed, on the one hand, the failure threshold is generally not so far from
the yield strength, even in the case of very ductile materials, and, on the other hand, the appearance of
irreversible deformations may, in any case, be detrimental to the function that the structure in service
must perform.

For brittle materials, on the other hand, this distinction does not apply, since, with an extremely small
plasticity region, failure occurs at the moment of leaving the pure elasticity region.
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Figure 3.9: Fracture surface in the case of steel (left) and aluminum alloy (right).

3.2 Criteria

In order to be able to introduce relevant strength criteria for the different types of materials that
can be studied, it is first essential to define new quantities related to the stress tensor that has been
calculated. Indeed, one understands well that the values taken by the components of the latter are
directly related to the vector basis chosen: it is, therefore, necessary either to choose a relevant
basis taking into account the nature of the local phenomena in play or to define invariant quantities,
independent of the chosen vector basis used to express the stresses.

3.2.1 Local study of stresses

This paragraph is devoted to the presentation of the different local representations of stresses, which
can be used in the different strength criteria that will be presented below.

Quantities related to the choice of the facet

A first way is to consider the characteristic elements associated with the cleavage surface that is
introduced (mentally) when defining the stress vector, namely the plane tangent to this surface at
the point under study, and the outer unit normal vector n, which is orthogonal to this facet.

Normal and tangential stresses. The quantities defined here are shown in Figure 3.10.
The normal stress, noted σnn, is defined as the component of the stress vector along the outer

normal vector at the cut surface at the point under study:

σnn(x, t) =
〈

–σ(x, t)n,n
〉
, ∀x ∈ Ωt , ∀t

The tangential stress, or “shear stress”, noted τττΣ, is defined as the projection of the stress vector
in the plane of the facet Σ; it can therefore be obtained as:

τττΣ(x, t) = –σ(x, t)n−σnn(x, t)n, ∀x ∈ Ωt , ∀t

This vector can then be decomposed on a vector basis of the plane of the facet; thus, if m is a
unit vector of this plane (therefore m ⊥ n), we note:

τmn(x, t) =
〈

–σ(x, t)n,m
〉
=
〈
τττΣ(x, t),m

〉
, ∀x ∈ Ωt , ∀t

which is called “shear” along the direction m for a plane of normal vector n.
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Figure 3.10: Normal stress, tangential stress, shear.

■ Example 3.1 — Simple tensile test: quantities related to the facet. The definition of local quantities
in the case of a simple tensile test in the direction e is straightforward; indeed, since the stress tensor is expressed
simply as –σ = σeee⊗ e with σee > 0, we obtain:

• for the normal stress:
σnn =

〈

–σn,n
〉
=
〈

σee
〈

e,n
〉
e,n
〉
= σee

〈
e,n
〉2

hence, by defining α as the angle between the direction e of tension and the normal vector n on the facet:

σnn = σee cos2 α

• for the tangential stress:

τττΣ = –σn−σnnn = σee
〈

e,n
〉(

e−
〈

e,n
〉
n
)
= σee cosα(e− cosα n)

whose norm is:

∥τττΣ∥= σee|cosα|∥e− cosα n∥= σee|cosα|
√
〈

e, e
〉
−2cosα

〈
e,n
〉
+ cos2 α

〈
n,n

〉

= σee|cosα|
√

1−2cosα cosα + cos2 α = σee|cosα sinα|

or, finally:

∥τττΣ∥=
σee|sin(2α)|

2

• for the shear along the direction m perpendicular to n:

τmn =
〈

–σn,m
〉
= σee

〈
e,n
〉〈

e,m
〉

which allows for finding, for a unit vector m collinear to τττΣ, a shear equal to the norm of the tangential stress:
τmn = σee|sin(2α)|/2.

■
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Principal stresses

We know that the stress tensor –σ is symmetrical: it is therefore diagonalizable, and admits real
eigenvalues, associated with eigenvectors forming an orthonormal basis.

Principal stresses and principal directions of stress. The eigenvalues λ σ
k of the stress tensor,

called principal stresses, and the associated eigenvectors φφφσ
k , called principal directions, verify

the following relation:

–σφφφσ
k = λ σ

k φφφσ
k

Physically, the principal directions correspond to facet orientations (defined by their normal
vector) such that the stress vector is along the normal itself, which means that there is no
tangential stress on these facets; since these principal directions are perpendicular to each other,
we find ourselves in the situation represented in Figure 3.11.

When there is no possible ambiguity with the components of the stress tensor, the principal
stresses are often noted σk, ranking them from the largest to the smallest. If one of the principal
stresses is equal to zero, the stress state is said to be “biaxial”, or “plane”. If all three are the
same, it is referred to as a “spherical” stress state, as seen in the case of a fluid at rest. In the
case of multiple eigenvalues, it is still possible to determine an orthonormal basis of principal
directions.

The principal stresses, as well as their associated principal directions, are invariant in the
sense that their expressions are not related to the choice of the vector basis since they are
calculated as the roots of the characteristic polynomial:

det( –σ−σkI) =−σ3
k + i1( –σ)σ2

k − i2( –σ)σk + i3( –σ) = 0, 1 ≤ k ≤ 3

where the terms ik( –σ) are the invariants of the stress tensor, defined in Appendix A.2.4.

Figure 3.11: Stress state in the basis of the principal directions of stress.

! Although the principal stresses and their associated principal directions are indeed independent
of the choice of a basis, they still a priori depend on the point x ∈ Ωt , as well as on time.

■ Example 3.2 — Simple tensile test: principal stresses and associated principal directions. Since,
in the case of a simple tensile test in a direction e, the stress tensor is uniaxial ( –σ = σeee⊗ e), the determination of
the principal stresses is straightforward. Indeed, the stress vector on a facet of normal n is –σn = σee

〈
e,n
〉
e, hence,

in particular :
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1. –σe = σeee, which means that σee is a principal stress, associated with the direction e which corresponds to
the direction of the tensile test;

2. –σm = 0, ∀m ⊥ e, which shows that any unit vector m perpendicular to e is a principal direction, associated
with a principal stress equal to zero; this latter corresponds to a double eigenvalue of the tensor –σ, and any
vector basis of the normal plane e is principal.

■

R Experimentally, some transparent materials, called “photoelastic”, have the property of presenting
coloured fringes when they are placed between two filters that polarize light in directions perpendicular
to each other. This cross-polarized light allows for directly visualizing the differences between the
principal stresses within the material. Thus, the stress gradients are all the stronger as the fringes,
called “isochromatic”, are tightened.
The example of a “four-point bending” test, presented below, shows a linear evolution of the longitudinal
stress as a function of the transverse dimension in the central area of the specimen.

Mohr’s circles

In parallel with the previous definitions, there is a need for a graphical representation that allows
the information contained in the six components of the stress tensor (at each point of the material
domain) to be condensed pragmatically. In particular, by anticipating a little on the nature of the
criteria presented below, it is generally a question of being able to determine the extreme values of
the local quantities that have just been previously introduced, without necessarily linking them to
the orientation of the facet under study.

This is the purpose of Mohr’s circles, which carry in a system of two orthonormal axes, the
normal stress σnn on the abscissa and the norm τ = ∥τττΣ∥ of the tangential stress on the ordinate, for
different orientations of the normal vector n at the point x ∈ Ωt under study. We can then show that,
in this planar representation, the end of the stress vector is constrained to move in the area between
three circles whose centres are located on the abscissa axis, and whose intersection points with this
axis have as respective coordinates the principal stresses associated with the tensor –σ at the point
x ∈ Ωt under study. Logically, this representation, visible in Figure 3.12 is called “Mohr’s circles”;
given that it is the norm of tangential stress that is plotted on the ordinate, it is usual to represent
only the semicircles located above the abscissa axis.
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Figure 3.12: Mohr’s circles.

R This remarkable result is obtained by using the basis (φφφσ
1 ,φφφ

σ
2 ,φφφ

σ
3 ) of the stress tensor’s principal

directions at the point under study; by noting (n1,n2,n3) the components in this basis of the normal
vector n, we can write that the normal and tangential components of the stress vector are expressed as:

σnn = σ1n2
1 +σ2n2

2 +σ3n2
3

τ2 = σ2
1 n2

1 +σ2
2 n2

2 +σ2
3 n2

3 −σ2
nn

Knowing that ∥n∥2 = n2
1 +n2

2 +n2
3 = 1, we can express the squares of the components of the normal

vector n as functions of the normal and tangential stresses:

n2
1 =

τ2 +(σnn −σ2)(σnn −σ3)

(σ1 −σ2)(σ1 −σ3)

n2
2 =

τ2 +(σnn −σ3)(σnn −σ1)

(σ2 −σ3)(σ2 −σ1)

n2
3 =

τ2 +(σnn −σ1)(σnn −σ2)

(σ3 −σ1)(σ3 −σ2)

Recalling that the principal stresses are classified in descending order (σ1 ≥ σ2 ≥ σ3), making it clear
that, necessarily, n2

k ≥ 0 (for 1 ≤ k ≤ 3) allows us to obtain the following conditions for the location of
the vector end –σn in the Mohr’s plane:

τ2 +(σnn −σ2)(σnn −σ3)≥ 0

τ2 +(σnn −σ3)(σnn −σ1)≤ 0

τ2 +(σnn −σ1)(σnn −σ2)≥ 0

hence:
(

σnn −
σ2 +σ3

2

)2

+ τ2 ≥
(

σ2 −σ3

2

)2

(

σnn −
σ1 +σ3

2

)2

+ τ2 ≤
(

σ1 −σ3

2

)2

(

σnn −
σ1 +σ2

2

)2

+ τ2 ≥
(

σ1 −σ2

2

)2

which effectively corresponds to the area between three circles, tangent to each other, and intersecting
the abscissa axis in σ1, σ2 and σ3.
In the case where two principal stresses are equal, the three circles are reduced to only one circle, on
which the end of the stress vector is constrained to move, as shown in the example below.
The above developments apply of course to the case of any symmetrical tensor, and therefore, in
particular, to the Green-Lagrange strain tensor E, and to the infinitesimal strain tensor –ε. Mohr’s
circles are widely used, for example, for the graphical analysis of strain gauge rosettes.
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■ Example 3.3 — Simple tensile test: Mohr’s circle. In the case of the simple tensile test, we saw in
Example 3.2 that the associated principal stresses were σee and 0 (double eigenvalue). The Mohr’s circles are
therefore reduced to a single circle, represented below, on which the end of the stress vector moves.

More precisely, by defining α as the angle between the direction e of tension and the normal vector n on the
facet, we find as in Example 3.1 that:

σnn = σee cos2 α =
σee

2

(
1+ cos(2α)

)

τ =
σee

2
|sin(2α)|

which, in this case, allows us to directly visualize the angle α on Mohr’s circle. ■

3.2.2 Cleavage failure criteria

The first criterion presented here concerns the case of brittle fracture, referred to in Paragraph 3.1.2;
the associated microscopic phenomena correspond to the separation of atomic planes following the
application of normal forces to them, which we call “cleavage”. In the case of a monocrystalline
material occupying the domain Ωt at the instant t, the cleavage planes, which are the ones likely to
break first, are perfectly known, and are characterized by the orientations nk (1 ≤ k ≤ N) of their
respective normal vectors. In this case, the material resists if the normal stresses σnknk according to
these planes, at any given point and at the studied time, are below the cleavage threshold:

max
1≤k≤N

σnknk(x, t) = max
1≤k≤N

〈

–σ(x, t)nk ,nk
〉
< σc, ∀x ∈ Ωt , ∀t

where σc refers to the cleavage threshold stress of the studied material. Conversely, there is cleavage
as soon as, at least at one point xO of the domain, there is a direction nl of the crystal such that we
have:

σnlnl (xO, t) =
〈

–σ(xO, t)nl ,nl
〉
= σc

In the case of a polycrystalline material, composed of a multitude of crystals (or “grains”) of
any orientation, or in the case of amorphous materials, which are without crystal structure, the most
straightforward generalization of the previous criterion is to assume that all facets play a similar
role with respect to cleavage, hence the following criterion.

Maximum normal stress criterion. For brittle materials subjected to cleavage, the maximum
normal stress criterion specifies that cleavage failure will occur as soon as, at a specific point in
the material domain, the normal stress on a facet reaches a threshold value σr, independent of
the orientation of the facet, and which can be determined by a macroscopic characterization test
(such as a tensile test, for example). Thus, there is no failure if:

max
∥n∥=1

σnn(x, t)< σr, ∀x ∈ Ωt , ∀t
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and, conversely, failure occurs as soon as there is xO ∈ Ωt such that:

max
∥n∥=1

σnn(xO, t) = σr

The facet that breaks is therefore the facet that has suffered the greatest normal stress, all facets
combined; the Mohr’s circles, visible in Figure 3.13, allow to immediately establish that it is
actually the major principal stress (σ1) at the point under study:

max
∥n∥=1

σnn(x, t) = σ1(x, t), ∀x ∈ Ωt , ∀t

and that the compliance with the criterion therefore consists of the situation described in the
figure.

Figure 3.13: Mohr’s circles: compliance with the maximum normal stress criterion.

■ Example 3.4 — Tensile strength of concrete. Concrete is a good example of a brittle material that breaks
by cleavage; it is actually a ceramic (cement), reinforced by particles (grains of sand and stones), and has extremely
low resistance to cleavage, namely a few MPa at most. This implies that we often prefer to consider that this material
can not withstand tension, and say that there is a failure as soon as:

max
∥n∥=1

σnn > 0

at a point in the structure under study.
In practice, this explains why the determination of this tensile strength cannot be carried out using a conventional

tensile test, as the failure would occur far too quickly to be able to deduce a reliable value. The tensile strength is
then determined by a “Brazilian test”, which consists of a diametral compression test of a cylindrical specimen of
concrete. It can then be shown that the major principal stress is maximum at any point along this diameter, and is:

max
x∈Ωt

σ1(x) =
2P

πDH

where P is the compression force, and D and H are the diameter and height of the cylindrical specimen, respectively.
For conventional specimen sizes (D ≈ H ≈ 10cm), the compression failure force is then about ten kN, which
guarantees good experimental precision. The figure below compares the result of a numerical simulation (where the
colours are associated with the major principal stress, expressed in MPa, and the arrows represent the associated
principal direction, at each point) with the cracking during an experimental test.
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This criterion also makes it possible to interpret the mode of failure of concrete pillars subjected to seismic
loading, as shown below.

This loading can, as a first approximation, be modelled as a uniform shear stress in the pillar:

–σ = t(i1 ⊗ i3 + i3 ⊗ i1)

with t > 0, and where i3 is vertical, upwards, and i1 is the shear direction on the lower and upper surfaces of the
pillar. The principal stresses are then solutions of:

det( –σ−σkI) =−σ3
k + t2σk = 0

or, at any point (since the shear is uniform):

σ1 = t, σ2 = 0, σ3 =−t

which can be seen in Mohr’s plane below. The major principal stress σ1 is therefore strictly positive, of associated
principal direction φφφσ

1 = (i1 + i3)/
√

2. This allows us to justify a posteriori why the cracks form an angle of
approximately 45° with respect to the vertical: this angle corresponds to the orientation of the facets which are
subjected to pure tension.

■
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Summary 3.1 — Design according to a cleavage failure criterion. A material domain Ωt ,
whose material is brittle, with a cleavage strength σr, maintains its integrity if:

σ1(x, t) = max
∥n∥=1

σnn(x, t)< σr, ∀x ∈ Ωt , ∀t

where σ1 and σnn are respectively the first principal stress, and the normal stress associated with
a facet of normal n. Failure then occurs at the first point xO such that, at time t:

σ1(xO, t) = max
∥n∥=1

σnn(xO, t) = σr

3.2.3 Shear failure criteria

In the case of ductile materials, which have a predominantly crystalline structure, we have seen
in Paragraph 3.1.1 that slips could occur according to certain privileged atomic planes, creating
irreversible movements that cause the specimen to undergo plastic deformation. Thus, in the
case of a monocrystalline material occupying the domain Ωt at the instant t, we can establish a
criterion similar to the one we had established for cleavage failure: it is Schmid’s law which, for slip
directions mk (1 ≤ k ≤ N) associated with respective slip planes of normal vectors nk, establishes
that there is no plastic slip if the shear stress τmknk according to these directions, at any given point
and at the studied time, are below the slip threshold:

max
1≤k≤N

τmknk(x, t) = max
1≤k≤N

〈

–σ(x, t)nk ,mk
〉
< τc, ∀x ∈ Ωt , ∀t

where τc is the critical shear stress.

■ Example 3.5 — Tensile test on a single crystal.

We consider a faced-centred cubic single crystal, subjected to pure tension of axis e = i3 parallel to the vertical
axis of the cube represented above: –σ = σeei3 ⊗ i3. The first activated slip system has as characteristics the slip
planes of normal vectors n1 = (i1 + i2 + i3)/

√
3 (whose trace on the cube is shown above) and slip directions

m1 = (−i1 + i3)/
√

2 (corresponding to the line [1̄01] above).
Since the stress tensor is assumed to be uniform, Schmid’s law then makes it possible to establish that there is

no slip if:

τm1n1 =
〈

–σn1 ,m1
〉
= σee

〈
i3 ,n1

〉〈
i3 ,m1

〉
=

σee√
6
< τc

Otherwise, the affected planes may slip, causing “steps” to appear on the surface of the sample, as shown below.
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The images above (under optical microscope on the left, and under scanning electron microscope in the centre
and right) show this phenomenon in the case of a monocrystalline sample of pure nickel. ■

Criterion based on the maximum shear

In the case of polycrystalline materials (composed of a multitude of grains of any orientation),
it can be assumed, as in the case of the cleavage criterion presented above, that all facets play a
similar role with respect to slip, thus allowing the following criterion to be proposed.

Tresca Criterion. The Tresca criterion for a ductile material specifies that yielding (i.e. exit of
the pure elastic region) will occur as soon as, at a point in the material domain, the tangential
stress on a facet is higher than a threshold value τ0 independent of the orientation of the facet,
and which can be determined by a macroscopic characterization test (such as a tensile test for
example). Thus, we can say that we remain in the elastic region if:

max
∥n∥=1

∥τττΣ(x, t)∥< τ0, ∀x ∈ Ωt , ∀t

and, conversely, yield occurs as soon as there is xO ∈ Ωt such that:

max
∥n∥=1

∥τττΣ(xO, t)∥= τ0

Mohr’s circles, visible in Figure 3.14, show that the greatest tangential stress (as a norm) is
equal to the radius of the largest circle, which corresponds to the half difference between the
major and minor principal stresses at the point under study:

max
∥n∥=1

∥τττΣ(x, t)∥=
σ1(x, t)−σ3(x, t)

2
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and that it is obtained for facets whose normal vectors are the bisectors of the angles formed by
the principal directions φφφσ

1 and φφφσ
3 , hence:

n =
1√
2
(φφφσ

1 ±φφφσ
3 )

In addition, the following example shows that the shear threshold value is directly related to the
tensile yield strength σ0 : τ0 = σ0/2.

Figure 3.14: Mohr’s circles: compliance with the Tresca criterion.

■ Example 3.6 — Tensile test on a polycrystal: Tresca criterion. A polycrystal is subjected to a simple
tensile test of direction e : –σ = σeee⊗ e. The Tresca criterion makes it possible to affirm that one remains in the
elastic region as long as:

σ1 −σ3

2
=

σee

2
< τ0

where the principal stresses σ1 = σee and σ3 = 0 were determined in Example 3.2. This shows that the threshold
value τ0 is easily determined with a tensile test, taking τ0 = σ0/2, where σ0 is the tensile yield strength of the studied
material.

This result is of course consistent with the expression of the norm of the tangential stress obtained in Example 3.1:

∥τττΣ∥=
σee|sin(2α)|

2

where α refers to the angle between the direction e of tension and the normal vector n to the facet. Indeed, this norm
is maximum for α = 45° and is ∥τττΣ∥max = σee/2.

Besides, the concerned facets are inclined at 45° with respect to the axis of tension, which effectively corresponds
to normal vectors equal to the bisectors of the angles formed by the direction of tension e and any direction
perpendicular to e. This can be confirmed by experiments: for some materials and specific loading conditions, instead
of the cup-and-cone shaped fracture surfaces visible in Figure 3.9, it is possible to observe an approximately flat
fracture surface, inclined at 45°, as shown in the illustration below, for the failure of an aluminium test specimen.

■
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R Given its definition, the stress assessed in the Tresca criterion, commonly referred to as the Tresca
stress, is an invariant of the stress tensor, since it does not depend on the choice of the vector basis for
expressing this latter, and is written in a simple way using the principal stresses.

‘Alternative” criterion

Since the Tresca criterion that has just been established does not always agree with experiments,
and also requires the calculation of the principal stresses, another proposal is to define a criterion
directly related to the stress tensor, or at least to the part of it that is characteristic of shear. For this
purpose, the following decomposition is introduced.

Orthogonal decomposition of the stress tensor. We can write at any point of the domain the
stress tensor as the sum of two tensors:

–σ = σmI+ –σD =
tr –σ

3
I+ –σD

where σmI is the “spherical part” of –σ, which represents the average normal stress in the domain,
and –σD is called the ”deviatoric part” of –σ , which by construction has a trace equal to zero
because:

tr –σD = tr( –σ−σmI) = tr –σ−σm trI= tr –σ− tr –σ

3
3 = 0

A schematic representation of this decomposition is given in Figure 3.15.
This decomposition is referred to as orthogonal because we have, in the sense of the tensor

scalar product, as defined in Appendix. A.2.2:

〈

–σD ,σmI
〉
= tr(σmI

T –σD) = σm tr –σD = 0

Figure 3.15: Orthogonal decomposition of the stress tensor (in the basis of the principal directions).

The deviatoric part –σD defined in this manner is an indicator of shear: if it is zero, we necessarily
have –σ = σmI which is isotropic, in other words, which has no shear, regardless of the facet under
study. A new shear failure criterion is then defined using –σD.

von Mises Criterion. The von Mises criterion for a ductile material specifies that yield will
occur as soon as, at a material point, the equivalent von Mises stress σeq is greater than the
tensile yield stress σ0. We therefore remain in the elastic region if:

σeq(x, t)< σ0, ∀x ∈ Ωt ,∀t

where the definition of von Mises stress, at any point and at any time, is associated with the
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tensor norm (as defined in Appendix : A.2.2) of the deviatoric part of –σ:

σeq(x, t) =

√

3
2
∥ –σD(x, t)∥=

√

3
2

tr
(

–σD(x, t)2
)

since –σD is symmetrical. Conversely, yield occurs as soon as there is xO ∈ Ωt such that:

σeq(xO, t) = σ0

R The previous criterion can also have an energetic interpretation: indeed, we can show that the von
Mises stress is related to what is defined as the elastic shear strain energy, implying that the criterion
can express the fact that one enters plasticity as soon as this energy reaches a given threshold.
Moreover, whatever the interpretation adopted, we find that the von Mises stress is an invariant of the
stress tensor, which can be expressed as a function of the principal stresses:

σeq =

√

(σ1 −σ2)
2 +(σ2 −σ3)

2 +(σ3 −σ1)
2

2

■ Example 3.7 — Tensile test on a polycrystal: von Mises criterion. We consider a polycrystal subjected
to a simple tensile test of direction e = i3: –σ = σeei3 ⊗ i3, with σee > 0. The von Mises criterion makes it possible to
affirm that one remains in the elastic region as long as:

σeq < σ0

where σ0 is the tensile yield strength of the studied material. In this case, the equivalent von Mises stress is expressed
as:

σeq =

√

3
2

tr –σ2
D =

√

3
2

tr
((

–σ− σee

3
I
)2
)

taking into account the definition of the deviator part of –σ: –σD = –σ− (tr –σ)I/3. We then obtain :

σeq =

√

3
2

tr

(
(
− σee

3
(i1 ⊗ i1 + i2 ⊗ i2)+

2σee

3
i3 ⊗ i3

)2
)

=

√

3
2

(
σ2

ee

9
+

σ2
ee

9
+

4σ2
ee

9

)

= σee

since tr(A2) = A2
11 +A2

22 +A2
33 +2A2

12 +2A2
13 +2A2

23 for a symmetrical tensor A, of components Amn in the vector
basis (i1, i2, i3).

In the case of a tensile test, the equivalent von Mises stress σeq is therefore directly equal to the value of the
uniaxial stress, which justifies a posteriori the 3/2 coefficient in the definition of σeq. The von Mises criterion is
therefore reduced in this case to:

σee < σ0

to ensure that we stay in the elastic region. ■

Summary 3.2 — Design according to a shear failure criterion. A material domain Ωt ,
whose material is ductile and has a yield strength σ0, remains in the elastic region if it meets
one of the following two criteria, to be chosen according to the material studied:

• Tresca criterion:

σ1(x, t)−σ3(x, t)
2

= max
∥n∥=1

∥τττΣ(x, t)∥<
σ0

2
, ∀x ∈ Ωt , ∀t

where σ1 and σ3 are the major and minor principal stresses respectively, and τττΣ is the
shear stress associated with a facet of normal vector n;
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• von Mises criterion:

σeq(x, t) =

√

3
2

tr
(

–σD(x, t)2
)
< σ0, ∀x ∈ Ωt , ∀t

where –σD(x, t) = –σ(x, t)−
(

tr –σ(x, t)
)
/3 I is the deviatoric part of the stress tensor.

Yield then occurs locally at the first point xO such that, at time t, the selected criterion for the
material is no longer verified, i.e. respectively when:

σ1(xO, t)−σ3(xO, t)
2

= max
∥n∥=1

∥τττΣ(xO, t)∥=
σ0

2

σeq(xO, t) =

√

3
2

tr
(

–σD(xO, t)2
)
= σ0

R It is interesting to compare the Tresca and von Mises criteria, for the same yield strength σ0. First of all,
the two criteria, of course, have the common property of being insensitive to pressure: indeed, if the
stress state –σ is admissible, –σ+ pI is also admissible, regardless of the pressure p.
Besides, both criteria can easily be represented in the three-dimensional basis of principal stresses. By
definition, the von Mises criterion can be represented as a cylinder of revolution, of radius σ0, and of
axis the line corresponding to the identity tensor (of components (1,1,1,1) in this basis); similarly, we
can show that the Tresca criterion takes the form of a hexagonal base cylinder of side σ0 and axis of the
same direction. Both criteria are shown in the figures below.

A projection of these criteria, interesting to analyze, corresponds to the case where one of the principal
stresses (σ3 for example) is equal to zero. In this case, the curves obtained for the von Mises and Tresca
criteria are shown below.
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3.2.4 Other criteria

In the above, we have deliberately limited ourselves to presenting the most commonly used criteria
for the design of parts or structures based on metallic or ceramic materials. There is a multitude
of others, some of which may focus on the strain tensor rather than the stress tensor. In any case,
all have in common the ability to represent, at a macroscopic scale, phenomena that occur at a
microscopic scale. Without being exhaustive, here are two criteria that allow us to see the diversity
of possible forms.

Tsaï-Hill criterion

In the case of materials with a highly anisotropic microstructure, it is necessary to have a criterion
that is associated with the different directions characteristic of the medium. This is the case, for
example, of long-fibre composite materials, the structure of which is shown in Figure 3.16, and for
which the tensile strength may be ten times higher for a tensile test along the fibre direction than in
a perpendicular direction, as shown in Table 3.1. These materials are generally manufactured in the
form of layers (or “plies”) for which the directions of the fibres are all identical.

Figure 3.16: Example of a long-fibre composite material (two plies shown).

In the case of a thin plate (of plane (i1, i2)), for which only one direction of fibres is present,
a strength criterion can be written (assuming that the stress along the third direction i1 ∧ i2 is
negligible) as:

(σL

X

)2
− σLσT

X2 +
(σT

Y

)2
+
(τLT

S

)2
< 1

where we have considered a local vector basis associated with the direction of the fibres in the plate
(eL: direction of the fibres, eT : direction, which is perpendicular to that of the fibres):

σL =
〈

–σeL , eL
〉
, σT =

〈

–σeT , eT
〉
, τLT =

〈

–σeL , eT
〉
=
〈

–σeT , eL
〉

and the associated strength values, measured using specific tests, are noted X , Y and S respectively.
Figure 3.17 allows us to visualize the domain where the criterion is verified, for different values of
the local shear stress τLT .

Mohr-Coulomb criterion

Another criterion, widely used in the case of granular or porous media, is the Mohr-Coulomb
criterion, which allows for taking into account the increase in the shear strength of the medium
when the applied pressure increases (which justifies a posteriori the interest of compacting a soil).
This criterion can be used in particular in the case of concrete, although there are other specific and
more precise criteria for this material. To avoid failure, one has to verify:

∥τττΣ∥+σnn tanφ < c
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Figure 3.17: Visualization of the Tsaï-Hill criterion in the stress plane (σL,σT ).

where c represents the “cohesion” of the medium, which refers to the shear strength of the medium
at zero pressure, and φ is the “angle of internal friction” characterizing the strength of the medium
due to friction forces between its grains. The visualization of this criterion is straightforward using
the Mohr’s circles: it consists in saying that the Mohr’s circles must remain below the line of
equation τ = c−σnn tanφ to avoid failure. Figure 3.18 depicts two different stress states verifying
this criterion and shows the improved strength of the medium when the pressure increases, i.e.
when the Mohr’s circles move to the left.

Figure 3.18: Visualization of the Mohr-Coulomb criterion in the Mohr plane.

! In all this part, we have limited ourselves to the case of monotonous stresses that are applied
until fracture. Another important class of loadings to take into account is cyclic loadings,
which can lead to material failure after a more or less significant number of cycles, and for
load amplitudes that are much smaller than in the monotonous case. This is referred to as
“fatigue failure” of the material.

Besides, to be exhaustive, it would also be necessary to mention all causes other than
mechanical that can lead to failure: thermal, chemical, . . .

3.3 Stress concentrations

An essential point to take into account in the parts or structures being designed is that the presence
of defects, such as holes, tends to increase the expected stress level significantly, and can quickly
lead to failure. In the same way, specific shapes are to be avoided for the geometry of the part,
otherwise, the stresses may locally increase. Figure 3.19 shows this phenomenon for compression
specimens where the stress field is visualized by photoelasticity. Of course, these variations are
related to the elastic behaviour of the material and would be different for another kind of behaviour.
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Figure 3.19: Influence of defects on the stress field in compression specimens: visualization of
isochromatic fringes obtained by photoelasticity.

3.3.1 Influence of a hole

A first typical example of the nature of the phenomenon is to study the influence of a hole on an
otherwise uniform stress field. This scenario will show that the resulting local increase in stress is
not related to the reduction in the area of the cross-section actually able to withstand internal forces;
we will then speak of “stress concentration” to designate this phenomenon. The estimation of this
latter can be obtained by solving the associated elasticity problem, as defined in Chapter 5. In what
follows, we show how numerical simulation can be an efficient way of evaluating this phenomenon.

Plate with a circular hole in tension

One case that can be treated analytically is that of a plate, subjected to a simple tensile stress
along one of its edges ( –σ = σ∞ i1 ⊗ i1), and which has a circular hole in its centre with dimensions
significantly smaller than the lateral dimensions of the plate, so that there is no influence of the free
boundary conditions (on the sides of the plate) on the stress field near the hole.

Figure 3.20 shows the two components σ11 (bottom right) and σ22 (bottom left) of the stress
tensor, obtained by numerical simulation for the upper right quarter of the geometry (the solution
being symmetrical with respect to the two median planes of the plate). We see:

• on the one hand, that there is a compression area, “before” and “after” the hole along the
longitudinal direction of the specimen; this zone is thus dominated by negative transverse
stresses (σ22), the minimum being directly the opposite of the tensile stress σ∞ applied to the
plate;

• on the other hand, that there is a high-tension area at the hole, along a direction perpendicular
to the direction of tension; the longitudinal stresses (σ11), just at the edge of the hole, amount
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to three times the tensile stress σ∞ applied to the plate.

Figure 3.20: Stress field in a plate with a circular hole.

The stress concentration coefficient, noted Kt , is then defined as the ratio between the maximum
stress obtained because of the defect and the nominal stress that would have been observed in the
absence of the defect, i.e. here: Kt =3.

In particular, it can be seen that this coefficient does not depend on the radius of the hole, but
only on the geometry of the defect, as confirmed below.

From the hole to the crack

If we now study a hole of elliptical shape, of half axes a and b respectively according to i2 and
i1, a tensile stress identical to the previous case ( –σ = σ∞ i1 ⊗ i1) allows us to obtain, by numerical
simulation, a component σ11 represented on Figure 3.21 (on a quarter of the geometry).

Figure 3.21: Stress field in a plate with an elliptical hole.

We then see that, even if stress concentrations are much more confined near the hole, the
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maximum value of the longitudinal stress (σ11) now implies a stress concentration coefficient:

Kt = 1+2
a
b

or a maximum longitudinal stress, located at 90° at the edge of the hole, equal to five times the
nominal stress σ∞ in the case of a hole twice as wide as long.

In the extreme case where the hole is thin enough to be perceived as a crack, it is possible
to establish that it is the minimum radius of curvature ρ of the hole that is dimensioning, with a
resulting stress concentration factor:

Kt = 1+2
√

a
ρ

Figure 3.22 allows us to observe the evolution of the longitudinal stress (σ11), obtained by numerical
simulation on a quarter of geometry. It can thus be concluded that the more “angular” the shape of
the defect is (in the sense of the more or less rapid variation of its boundary), the more intense the
stress concentrations are. This is confirmed by Figure 3.23, which shows the isochromatic fringes
of the stress field obtained by photoelasticity.

Figure 3.22: Stress field in a plate with a crack.

Figure 3.23: Stress field around a crack, observed by photoelasticity (isochromatic fringes).



94 Chapter 3. Strength criteria

R In the limit case where the radius of curvature ρ is zero, we find an infinite stress at the crack tip. The
framework of fracture mechanics (in the planar case) then allows us to specify the asymptotic form of
the stress field in the vicinity of this singular point:

σrr ∼
KI

4
√

2πr

[

5cos

(
θ

2

)

− cos

(
3θ

2

)]

σθθ ∼ KI

4
√

2πr

[

3cos

(
θ

2

)

+ cos

(
3θ

2

)]

σrθ ∼ KI

4
√

2πr

[

sin

(
θ

2

)

+ sin

(
3θ

2

)]

where (r,θ) are the polar coordinates taking as origin the crack tip. It is then the coefficient KI , called
“stress intensity factor”, that characterizes the field intensity in the vicinity of the crack tip, and therefore
the ability of the material to more or less resist crack propagation.

This coefficient can be measured experimentally using specific tests such as tensile tests on notched spec-
imens, called “Compact Tension” (or “CT”) specimens, whose geometry is represented schematically
below.

In reality, the stress field cannot, of course, be singular at the crack tip: there is a confined plasticity
zone that limits the extreme stress values, without significantly influencing the experimental estimation
of the stress intensity factor.

3.3.2 Influence of geometry

Similarly, variations in the geometry of the structure can have a strong influence on the evolution of
the stress field. Figure 3.24 shows in photo-elasticity that, for a fixed overall shape and loading, the
presence of concave corners has a significant local influence on the spatial variation of the stress
field, but also on the extreme values of this latter.

These findings justify the form adopted for the tensile test specimens, and more precisely, the
presence of connection fillets between the shoulders and the gauge section of the test specimen,
as mentioned in Paragraph 3.1.1. These fillets make it possible to limit the influence of a sudden
variation in geometry, such as a change in section; indeed, Figure 3.25 allows us to compare, on
a tensile specimen made of photoelastic material, the evolution of the stress field for a sudden
variation in section (left) and for a variation “softened” by the presence of the fillet (right): in the
latter case, the coloured fringes are closer than in the immediate vicinity of the right angle on the
left side of the specimen.

In order to effectively design such specimens, abacus such as the one in Figure 3.26 can be
used to estimate the stress concentration coefficient for a shaft under tensile stress, whose cross-
sectional variation is done using a connecting fillet. At fixed diameter ratio D/d, the coefficient
Kt increases when the radius r of the fillet decreases, and this increase is all the greater when this
radius decreases.
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Figure 3.24: Influence of the presence of concave corners: observations in photoelasticity (isochro-
matic fringes).

Figure 3.25: Influence of a connecting fillet on a tensile specimen: photoelastic observations
(isochromatic fringes).

3.4 Summary of important formulas

Design according to a cleavage failure criterion – Summary 3.1 page 83

no failure if σ1 = max
∥n∥=1

σnn < σr

Design according to a shear failure criterion – Summary 3.2 page 87

no yield according to the Tresca criterion if
σ1 −σ3

2
= max

∥n∥=1
∥τττΣ∥<

σ0

2

no yield according to the von Mises criterion if σeq =

√

3
2

tr
(

–σ2
D

)
< σ0

–σD = –σ− tr –σ

3
I
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Figure 3.26: Abacus to estimate the stress concentration coefficient in the case of a shaft with
shoulders in tension.



4. Material behaviour

The previous chapters have allowed us to define the strains and stresses separately
within a given material domain. However, it is clear that, for fixed geometry and
loading, two bodies made of different materials will deform differently a priori. It is,
therefore, necessary to establish mathematical relations between the strain and stress
tensors in order to solve a mechanical problem in its entirety.

WHY STUDY MATERIAL BEHAVIOUR?

4.1 Mechanical behaviour of deformable solids

Here we summarize the concepts of the previous chapters, which will allow us to solve a complete
problem. We limit ourselves to the framework of the infinitesimal deformation hypothesis, which
allows us to consider as one the initial and current configurations: we will then note x the spatial
variable.

4.1.1 Review of the unknowns and equations of the problem

To solve a continuum mechanics problem is to be able to determine, at each point x of a material
domain Ω, and at any time t:

• the displacement field u(x, t), consisting of three scalar functions of space and time;
• the strain field –ε(x, t) (represented by the infinitesimal strain tensor because of the adopted

framework), consisting, because of its symmetry, of six scalar functions of space and time;
• the stress field –σ(x, t), consisting, because of its symmetry, of six scalar functions of space

and time.

In all, there are, therefore, fifteen scalar functions of space and time that must be determined to
solve the problem under study.

For this purpose, several partial differential equations are currently available, which are valid at
any point within the domain, and at any time:
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• an equation linking displacement and strains:

–ε(x, t) =
1
2

(

Dxu(x, t)+(Dxu(x, t))T
)

consisting, after projection in a vector basis, of six scalar partial differential equations;
• a local equilibrium equation:

ρ(x, t)a(x, t) = fV (x, t)+divdivdivx –σ(x, t)

where ρ and a can be expressed as functions of the displacement (the precise details will be
recalled in Paragraph 5.1.1); three scalar partial differential equations are then obtained.

We then have nine scalar equations, at any point in the domain and at any time, for which we
can write as many boundary conditions as needed:

• known components of the displacement field at certain points on the boundary of the domain;
• known components of the stress vector at other points on the domain boundary;
• initial conditions in displacement and velocity at any point within the domain.
From this list, we can deduce that six scalar equations are missing at each point of the domain

at any given time. It is quite instinctive to assume that these missing relations are to be established
between stresses and strains, which we have studied separately until now. Indeed, with fixed
geometry and loads, it is logical to anticipate that different deformations occur according to the
material chosen for the part or structure studied, in particular, if we consider stiffness properties,
which we will define later in this chapter.

4.1.2 Diversity of material behaviours

The “constitutive relations” that we seek to establish between stress and strain can be of very
different natures depending on the materials studied, and the loadings they undergo (mechanical,
thermal, hygrometric, chemical, . . . ). Ideally, these relations could be determined by describing
local phenomena at very small scales within matter, using the results of statistical physics or
molecular dynamics, for example. In practice, even if the advances in these fields are significant,
it is still challenging to use the results directly to determine the form of constitutive relations (or
merely the parameters that govern them) at the macroscopic scale, which is the scale taken into
account in the context of continuum mechanics.

Thus, as in the previous chapter, characterization tests such as the tensile test are preferred to
determine laws of a phenomenological type (Figure 4.1 allows us to see the diversity of tensile
curves that can be obtained for different materials). The working hypothesis is to assume that
the mechanical properties that are measured on a sample of material are representative of the
properties throughout the medium. Behind this hypothesis, at least one property of macroscopic
homogeneity is hidden. Thus, we must take into account as many constitutive relations as there are
macroscopically distinct media. For example, if a mechanical structure is obtained by welding, or
glueing, of two parts made of different steels, it is necessary to know the respective properties of
these two components (and possibly of the weld or glue if it is assumed that the assembly is not
perfect) in order to be able to set the equations in each of these media.

Besides, it is also essential to have a certain homogeneity at the microscopic level: different
areas must have similar behaviours when considering a volume of sufficient size (but much smaller
of course than the size of the test specimen studied). This hypothesis of defining what is called a
“representative volume element” (or “RVE”) is what allows us to consider concrete as a homoge-
neous material on a macroscopic scale despite its different components on the microscopic scale, or
steel as an isotropic material despite the multiple orientations of the “grains” which compose it.

Thus, the various characterization tests that can be carried out allow for highlighting a multi-
plicity of generic classes of behaviours, of which here are some brief elements.
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Figure 4.1: Typical tensile curves for different materials.

Elasticity (linear and non-linear) – For a low load level, the behaviour is often linear and re-
versible: during the tensile test, the specimen can be loaded and then discharged several times,
each time returning at the origin of the tensile curve, as already mentioned in Paragraph 3.1.1.
Depending on the materials, the elastic behaviour may remain when the deformation in-
creases, but with significant non-linearity, as in the case of elastomers for example, as shown
in Figure 4.3 (left).

Yield strength and irreversible deformations – For ductile materials, beyond a certain threshold
called “yield strength”, irreversible deformations appear, which means that after discharge
and return to zero stress, we do not return at the origin of the tensile curve. In the case of
metallic materials, microscopic mechanisms related to plasticity were quickly mentioned
in Paragraph 3.1.1; for polymers, irreversible deformations are mainly due to the sliding
of molecular macro-chains between them. When the yield strength does not change as a
function of plastic deformation, the material is called “perfectly” plastic; if it changes (as in
Figure 4.2), we talk about “hardening”, which can be “isotropic” or “kinematic” depending
on the nature of the elastic region evolution.

Time-dependent behaviour – For most materials, we can observe a more or less significant
evolution of the state of stress or strain while the external loading no longer evolves with
time; we then speak of “creep”, when the material gradually deforms under constant loading,
or “relaxation”, when the stresses decrease while the specimen shoulders are held still in
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Figure 4.2: Material with hardening.

the machine. These phenomena may be related to “viscoelasticity”, where the stiffness
characteristics of the material depend on the stress or strain rates applied, as in the case of
polymers in the glass transition zone for example. Figure 4.3 (right) shows the associated
behaviour in the case of “isochronous” tests, for which we plot, for different levels of the
applied stress, the value of the strain at different times tk.

Figure 4.3: Elastic and viscoelastic behaviour for isochronous tests (t2 > t1).

Damage – Mechanical properties can be modified by the evolution of the structure’s “health”:
indeed, as we have seen in Paragraph 3.1.2, materials degrade over time under the effect of
the loadings they undergo; the defects they contain (voids, inclusions, microcracks) increase
due to the underlying stress concentrations, and weaken in particular the overall stiffness.
Figure 4.4 shows the typical evolution of the compression behaviour of concrete for several
successive loading and unloading operations.

Cyclic loading and fatigue – During cyclic loadings, the material may, depending on the case,
see its deformations stabilise, or, on the contrary, amplify until failure: we then distinguish
“elastic shakedown” (or “adaptation”), “plastic shakedown” (or “accommodation”), and
“ratcheting”, depending on whether, on the stress-strain curve, there is stabilisation according
to a segment, a loop, or no stabilisation at all (the different cases are shown in Figure 4.5).
In the case of fatigue with a large number of cycles, negligible permanent deformations or
damage at the beginning can develop and lead to material failure, even at stress levels well
below the yield strength.
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Figure 4.4: Elastic behaviour of concrete with damage (in compression).

Figure 4.5: Fatigue behaviours: elastic shakedown, plastic shakedown and ratcheting (from left to
right).

4.1.3 Linear elastic material for infinitesimal deformations

The previous paragraph allowed us to consider the extreme diversity of the behaviours that can be
observed. We will limit ourselves here to the most elementary behaviour to be described, and which
is present in all materials: linear elasticity. Elasticity is characterized by reversible behaviour, which
means that the relations between stress and strain to be defined is instantaneous: regardless of the
history of previous loadings, they have (ideally) no influence on the described behaviour. Besides,
the tensile curves presented in Figure 4.1 systematically show a proportionality relationship between
uniaxial stress and strain, at least at the beginning of the test.

Of course, this does not allow us to conclude that the stress and strain tensors are proportional:
indeed, we have seen in Paragraph 3.1.1 that the transverse dimensions of the specimen decreased
when the specimen lengthened; for a tensile test along the axis i3, when we look at the components
of the two tensors in a vector basis (i1, i2, i3), we have ε11 ̸= 0 and ε22 ̸= 0, while the corresponding
components of the stress tensor are zero (σ11 = 0 = σ22), since the only non-zero component of –σ

is σ33.

Mathematical representation of the constitutive relation

Mathematically, we have seen in the previous chapters that second-order tensors represent linear
applications of the vector space in itself: thus, the stress tensor, defined in Paragraph 2.2.2, implies
that the stress vector depends linearly on the normal vector at the facet under study.
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To obtain a linear dependence of the stress tensor with respect to the infinitesimal strain tensor
(or vice versa), we can, therefore, focus on the linear applications of the space of second-order
tensors in itself: these applications consist of fourth-order tensors, of which we give some theoretical
elements in Appendix A.3. A specific fourth-order tensor is then defined in what follows.

Elasticity tensor. The “elasticity tensor” (or “stiffness tensor”) is defined as the fourth-order
tensor CCC relating the infinitesimal strain tensor to the stress tensor, at any point of the domain Ω

and at any time:

–σ(x, t) =CCC(x) –ε(x, t), ∀x ∈ Ω, ∀t

This is equivalent to writing in terms of components in a vector basis (i1, i2, i3) that:

σmn =
3

∑
p=1

3

∑
q=1

Cmnpqεpq, 1 ≤ m,n ≤ 3

It is therefore possible to interpret the elasticity tensor as a four-dimensional table, whose
components satisfy:

Cmnpq = tr
(
(im ⊗ in)

T
CCC(ip ⊗ iq)

)
, 1 ≤ m,n, p,q ≤ 3

Taking into account the symmetry of the stress and strain tensors, we get the number of
independent components of the elasticity tensor reduced, initially, to 36, since:

Cmnpq =Cnmpq, and Cmnpq =Cmnqp, 1 ≤ m,n, p,q ≤ 3

Besides, one can show, using thermodynamic considerations, that the elasticity tensor can be ob-
tained as the second-order derivative of an elastic internal energy, which implies another symmetry
condition, namely the “major” symmetry condition:

Cmnpq =Cpqmn, 1 ≤ m,n, p,q ≤ 3

Therefore, the elasticity tensor eventually has 21 independent components a priori, which, if they
are arbitrary, are therefore able to represent the linear elastic behaviour of every anisotropic material.
Of course, this number can be reduced as soon as we can highlight specific material symmetries of
behaviour, which implies additional relations between the different components of the elasticity
tensor, as we will see in Paragraph 4.2.

! In the general case, these components may depend on the point under study (if the material is
heterogeneous), but also on other environmental factors, such as temperature or humidity, for
example.

R It is of course possible to mathematically invert the constitutive relation, by expressing the infinitesimal
strain tensor as a function of the stress tensor:

–ε(x, t) = SSS(x) –σ(x, t)

where SSS is the “compliance” tensor, such that SSS=CCC−1.

Voigt notation

It may be convenient, in order to simplify calculations when manipulating the components of the
different tensors, to use Voigt notation, the principle of which is to reorganize the component
indices in order to obtain a more accessible representation. To do this, we “contract” each pair of
indices into a single one, to transform the symmetrical second-order tensors into six-component
vectors, and the symmetrical fourth-order tensors into six×six matrices, as shown in the following.
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Voigt notation in linear elasticity. The constitutive relation –σ = CCC –ε becomes, using Voigt
notation and a vector basis (i1, i2, i3):











σ̃1 = σ11

σ̃2 = σ22

σ̃3 = σ33

σ̃4 = σ23

σ̃5 = σ13

σ̃6 = σ12











︸ ︷︷ ︸
˜ –σ

=











C̃11 C̃12 C̃13 C̃14 C̃15 C̃16

C̃12 C̃22 C̃23 C̃24 C̃25 C̃26

C̃13 C̃23 C̃33 C̃34 C̃35 C̃36

C̃14 C̃24 C̃34 C̃44 C̃45 C̃46

C̃15 C̃25 C̃35 C̃45 C̃55 C̃56

C̃16 C̃26 C̃36 C̃46 C̃56 C̃66











︸ ︷︷ ︸

C̃CC











ε̃1 = ε11

ε̃2 = ε22

ε̃3 = ε33

ε̃4 = 2ε23

ε̃5 = 2ε13

ε̃6 = 2ε12











︸ ︷︷ ︸
˜ –ε

which means that, for the different tensors, the indices were contracted in pairs according to the
convention:

nn → n, and mn → 9−m−n, m ̸= n

taking care to apply a multiplier factor of 2 to the last three components of ˜ –ε, which is necessary
to be able to write that ˜ –σ = C̃CC˜ –ε.

Besides, the major symmetry condition of the elasticity tensor (Cmnpq = Cpqqmn, 1 ≤
m,n, p,q ≤ 3) implies that the matrix C̃CC is symmetrical (C̃i j = C̃ ji, 1 ≤ i, j ≤ 6).

R Thanks to the introduced factor 2, we can directly write what represents a volume density of elastic
strain energy as:

tr( –σ –ε) =
〈

˜ –σ, ˜ –ε
〉

in the sense of the scalar product between two vectors (with six components here).

4.2 Isotropic linear elastic material for infinitesimal deformations

We will describe here the most common constitutive relation used in continuum mechanics, which
allows us to take into account a minimum number of material parameters.

4.2.1 Isotropy hypothesis

As already mentioned above, while almost all materials are inherently anisotropic, at least locally,
most of them behave isotropically at the macroscopic scale: for example, polycrystalline materials
such as metals are composed of a large number of anisotropic “grains”, but the random nature of
the distribution of crystallographic orientations of the different grains makes these materials have
an overall isotropy, of a statistical nature.

From a practical point of view, to say that a material exhibits an isotropic behaviour at a point
is to assume that the relation between the stress and strain tensors at this point will be the same,
regardless of the prior change in orientation that may have been caused to the material domain.
Mathematically, this change in orientation can be described by applying a rotation matrix R0 (as
defined in Appendix A.2.6) to the reference configuration Ω0. This implies that a point q in the
neighbourhood of p is represented in the new initial configuration Ω∗

0 by:

q∗ = p+R0(q−p)

We then consider the same deformation of the neighbourhood of p for the two initial configurations,
which means that we apply displacements u(q) et u∗(q∗) verifying:

u∗(q∗) = R0u(q)
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hence, considering the associated displacement gradient tensors, expressed at point p:

Dp∗u∗ = R0(Dpu)(Dp∗p) = R0(Dpu)RT

0

since the rotation matrix verifies R−1
0 = RT

0 . We then deduce that the infinitesimal strain tensor –ε∗,
as described by an observer linked to the configuration Ω∗

0, is expressed as:

–ε∗ = R0 –εRT

0

Since the isotropy assumption implies that the constitutive relation has to remain unchanged
whatever the considered reference configuration (CCC∗ =CCC), one then has:

–σ∗ =CCC
∗ –ε∗ =CCC –ε∗

where –σ∗ is the stress tensor in the current configuration, as described by an observer linked to
the reference configuration Ω∗

0. This tensor is then expressed using –σ = CCC –ε, as described by an
observer linked to Ω0. For this, we use the “material frame-indifference” principle, which states
that the stress vector should not depend on the vector basis used to express it, or, equivalently, that
the stress vector should rotate if we keep the vector basis unchanged and if we rotate the current
configuration. In this situation, if the observer linked to Ω0 describes at x, and for a vector n normal
to the facet, a stress vector T = –σn, the one linked to Ω∗

0 describes at the same point a stress vector
T∗ = –σ∗(R0n

)
such that:

–σ∗(R0n
)
= R0( –σn)

which allows for writing that:

–σ∗ = R0 –σRT

0

Therefore, the isotropy hypothesis finally implies that:

R0(CCC –ε)RT

0 = R0 –σRT

0 = –σ∗ =CCC
∗ –ε∗ =CCC –ε∗ =CCC(R0 –εRT

0 )

whatever the infinitesimal strain tensor –ε and the rotation matrix R0. We then conclude with the
following theorem.

Rivlin-Ericksen theorem (linear case). A fourth-order tensor TTT, acting from the space of
symmetrical second-order tensors in itself, is said to be isotropic if and only if it satisfies:

R(TTTA)RT =TTT(RART), ∀A symmetrical,∀R such that RRT = I

Then there are two scalars α and β such that the tensor TTT can be expressed as:

TTTA= αA+β (trA)I, ∀A symmetrical

The proof of this result is detailed in Appendix A.3.2.

The application of this result is straightforward in the case of the elasticity tensor, leading to
the following definition.

Hooke’s law. The isotropy hypothesis allows the linear elastic constitutive relation to be written
as:

–σ(x, t) =CCC(x) –ε(x, t) = λ (x)
(

tr –ε(x, t)
)
I+2µ(x) –ε(x, t)

where λ (x) and µ(x) are called “Lamé parameters”, associated with the isotropic material under
study, and which are generally expressed in GPa. If, in addition, the material is homogeneous,
these two parameters λ and µ are constant, which means that only two scalars are needed to
describe the linear elastic behaviour of the material.
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To invert this relation, we begin by expressing the trace of the stress tensor as a function of
the infinitesimal strain tensor:

tr –σ = λ (tr –ε)(trI)+2µ tr –ε = (3λ +2µ) tr –ε

which allows for writing:
–ε(x, t) =− λ (x)

2µ(x)
(
3λ (x)+2µ(x)

)
(

tr –σ(x, t)
)
I+

1
2µ(x)

–σ(x, t)

in the general case of a heterogeneous material.

R The form of the isotropic linear elastic constitutive relation makes it possible to establish that the
principal strains and stresses share the same associated principal directions; indeed, if we use, at a
given point x, the vector basis (φφφσ

1 ,φφφ
σ
2 ,φφφ

σ
3 ) of the principal directions associated with principal stresses

(σ1,σ2,σ3), we find that the infinitesimal strain tensor is written, using the same basis vectors, as:

–ε =− λ

2µ(3λ +2µ)

(
3

∑
k=1

σk

)

I+
1

2µ

3

∑
k=1

σkφφφσ
k ⊗φφφσ

k

hence, finally:

–ε =
3

∑
k=1

εkφφφσ
k ⊗φφφσ

k , with εk =
(λ +µ)σk

µ(3λ +2µ)
− λ

2µ(3λ +2µ) ∑
l ̸=k

σl

These strains are principal since there is no shear strain term in the basis (φφφσ
1 ,φφφ

σ
2 ,φφφ

σ
3 ).

4.2.2 Link with the tensile test

While the previous paragraph highlighted the two Lamé parameters in the expression of the isotropic
constitutive relation, a second set of parameters is traditionally proposed, whose origin comes from
the analysis of the tensile test, allowing for building the constitutive relation practically.

Practical construction of the constitutive relation

If we consider a tensile test along the direction e, and the associated stress tensor ( –σ = σeee⊗ e

with σee > 0), we can then determine the infinitesimal strain tensor as:

–ε =− λσee

2µ(3λ +2µ)
I+

σee

2µ
e⊗ e

in the case of a homogeneous material, i.e. with constant Lamé parameters. If we consider a vector
basis (i1, i2, i3 = e), we finally find:

–ε =− λσee

2µ(3λ +2µ)
(i1 ⊗ i1 + i2 ⊗ i2)+

(λ +µ)σee

µ(3λ +2µ)
i3 ⊗ i3

As expected, we find that the longitudinal strain ε33 is proportional to the longitudinal stress σee,
but also that the cross-section narrows, given the negative transverse deformations ε11 and ε22. With
regard to these observations, the following two parameters are then defined.

Young’s modulus and Poisson’s ratio. Based on the analysis of a tensile test of a material in
its elastic region, we define classically:

• the Young’s modulus, noted E, as the coefficient of proportionality between longitudinal
stress and strain:

E =
σ33

ε33
=

σee

ε33
=

µ(3λ +2µ)

(λ +µ)
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• the Poisson’s ratio, noted ν , as the opposite of the coefficient of proportionality between
transverse and longitudinal strains:

ν =−ε11

ε33
=−ε22

ε33
=

λ

2(λ +µ)

Given these definitions, it is easy to see that Young’s modulus is similar to a stress (and is usually
expressed in GPa), while Poisson’s ratio is dimensionless.

In order to build the constitutive relation from these definitions, it is sufficient to use the basis
of the principal directions associated with the principal stresses and to consider the strains in these
same directions. Thus, the strain ε1 associated with the first principal direction is obtained by
expressing the “superposition” of three tensile tests, each in a different direction, and with intensity
the value of the associated principal stress, as shown in Figure 4.6. For this direction, the strain ε1

corresponds to a longitudinal strain for the first test, and a transverse strain for the other two, which
implies, given the definitions of E and ν , that:

ε1 =
σ1

E
−ν

σ2

E
−ν

σ3

E
Indeed, as we will discuss more precisely in Paragraph 5.3.1, all the equations of the problem are
linear, and it is thus possible to decompose the problem into a sum of simpler problems, whose
solutions are added to give the final solution of the problem under study.

Figure 4.6: Construction of the constitutive relation by superimposing three tensile tests.

By doing the same in the other two principal directions (knowing that there is no shear strain),
the constitutive relation is constructed as follows;

–ε =
(σ1

E
− ν

E
(σ2 +σ3)

)

i1 ⊗ i1 +
(σ2

E
− ν

E
(σ1 +σ3)

)

i2 ⊗ i2 +
(σ3

E
− ν

E
(σ1 +σ2)

)

i3 ⊗ i3

or by explicitly using the trace of the stress tensor:

–ε =

(
1+ν

E
σ1 −

ν

E
(σ1 +σ2 +σ3)

)

i1 ⊗ i1 +

(
1+ν

E
σ2 −

ν

E
(σ1 +σ2 +σ3)

)

i2 ⊗ i2

+

(
1+ν

E
σ3 −

ν

E
(σ1 +σ2 +σ3)

)

i3 ⊗ i3

hence, in condensed form:

–ε =
1+ν

E

–σ− ν

E
(tr –σ)I

This also allows us to give a second set of relationships between Lamé parameters and Young’s
modulus – Poisson’s ratio, namely:

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)
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Common parameter values

The physical interpretation that can be given to Young’s modulus and Poisson’s ratio allows for
setting bounds, which are also physical, for these latter. First of all, considering that a specimen
stretches when a tensile force is exerted on it, we can affirm that Young’s modulus is positive:

E > 0

In addition, in a shear test, the shear strain is along the shear direction; as these two quantities
are linked by the Lamé parameter µ (which is actually also called the “shear modulus”), this latter
is also positive, therefore:

µ =
E

2(1+ν)
> 0, hence: ν >−1

Finally, if we consider the case of an isotropic compression test, where we impose –σ=−pI with
a pressure p > 0 (obtained for example by the action of a fluid), we can write that the associated
infinitesimal strain tensor is:

–ε =
1+ν

E
(−pI)− ν

E
(−3p)I=−1−2ν

E
pI

This tensor is constant, and we then deduce the volume change of the specimen using the expression
developed in Paragraph 1.4.1 within the infinitesimal deformation hypothesis, which gives:

dV

V
= tr –ε =−3(1−2ν)

E
p

which is therefore uniform. Since, in practice, all materials subjected to isotropic compression have
their volume reduced, it can be deduced that:

3(1−2ν)

E
> 0, hence ν <

1
2

Therefore, it is concluded that Poisson’s ratio necessarily verifies:

−1 < ν <
1
2

Table 4.1 gives some typical values of Young’s moduli and Poisson’s ratios for several commonly
used materials, some at different temperatures.

Summary 4.1 — Isotropic linear elastic material (Hooke’s law). The relation that connects
the stress and infinitesimal strain tensors is written, in the case of an isotropic linear elastic
material, as:

–σ(x, t) =CCC(x) –ε(x, t) = λ (x)
(

tr –ε(x, t)
)
I+2µ(x) –ε(x, t), ∀x ∈ Ωt , ∀t

when expressed in stiffness, where λ (x) and µ(x) are the Lamé parameters, which are charac-
teristic of the material under study, or else:

–ε(x, t) =CCC
−1 –σ(x, t) =

1+ν(x)

E(x)

–σ(x, t)− ν(x)

E(x)

(
tr –σ(x, t)

)
I, ∀x ∈ Ωt , ∀t

when expressed in compliance, where E(x) and ν(x) are respectively the Young’s modulus and
Poisson’s ratio of the material under study.

In the case where the material is homogeneous, the different coefficients become constants,
which are characteristic of the material. In addition, the two pairs of material coefficients satisfy
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Material Young’s modulus (GPa) Poisson’s ratio

rubber 10−3–10−1 0.4999
plexiglas 2.4–2.9 0.40–0.43

epoxy resin 3–3.5 0.40
concrete 20–50 0.10–0.20

glass 50–90 0.18–0.30
aluminum 68–69 0.33–0.35

aluminum alloys 72–75 0.32
" (at 200°C) 66 0.325
" (at 500°C) 55 0.35

brass 100–130 0.37
bronze 125–130 0.34

" (at 180°C) 120 0.34
cast irons 80–170 0.21–0.29

titanium alloys 115–200 0.34
" (at 200°C) 103 0.34
" (at 315°C) 95 0.34

stainless steel 195–205 0.30–0.31
" (at 200°C) 170 0.30
" (at 700°C) 131 0.30

structural steels 210–220 0.27–0.30
" (at 200°C) 205 0.30
" (at 600°C) 170 0.315

silicon carbide 450 0.17
diamond 1050–1200 0.10

Table 4.1: Typical values of Young’s modulus and Poisson’s ratio for various materials (at room
temperature, unless otherwise stated).

the following relations:

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

E =
µ(3λ +2µ)

(λ +µ)
, ν =

λ

2(λ +µ)

R In the case of the isotropic compression test described above, we define the “bulk modulus” κ as the
opposite of the ratio between the applied pressure and the volume change obtained, i.e.:

κ =− p
tr –ε

=
E

3(1−2ν)

The limit case ν = 1/2 corresponds to perfectly incompressible materials, for which the bulk modulus
is therefore infinite. If, strictly speaking, there is no such material, elastomers are the closest materials
to this limit situation: for example, natural rubber, whose Poisson’s ratio is 0.4999.

■ Example 4.1 — Cylindrical bar subjected to a pressure. We consider a cylindrical bar Ω with a vertical
axis iz, circular cross-section of radius R, and height H. We also assume that the bar is in static equilibrium under the
action of a uniform pressure applied on the upper surface, and the reaction of the support. Finally, the material is
considered homogeneous and isotropic, and remains, with the infinitesimal deformation hypothesis, within the linear
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elasticity region, characterized by a Young’s modulus E and a Poisson’s ratio ν .

The list of equations and boundary conditions to be taken into account is as follows; by using the cylindrical
vector basis (ir(θ), iθ (θ), iz) associated with the cylinder (with z = 0 corresponding to the lower surface of the bar),
we want to determine a displacement field u and a stress field –σ satisfying:

• the local equilibrium equation at every point of the domain:

divdivdivx –σ = 0

• the contact condition with the support in terms of displacement (sliding contact):
〈

u(z=0) , iz
〉
= 0

• the contact condition with the support in terms of local forces (which are normal to the boundary because of
frictionless contact):

〈

–σ(z=0)(−iz), ir(θ)
〉
= 0 =

〈
–σ(z=0)(−iz), iθ (θ)

〉

• the free boundary condition on the lateral surface of the bar:

–σ(r=R)ir = 0

• the applied (uniform) pressure p0 condition on the upper surface of the bar:

–σ(z=H)iz =−p0iz

• the linear elastic, homogeneous and isotropic, constitutive relation of the material at each point of the domain,
expressed in compliance for example:

–ε =
1+ν

E

–σ− ν

E
(tr –σ)I

where the infinitesimal strain tensor is defined at each point as the symmetrical part of the displacement
gradient tensor:

–ε =
1
2

(
Dxu+(Dxu)T

)

We then see that a uniform and uniaxial stress tensor –σ = σ0iz ⊗ iz verifies all the equations related to forces:

divdivdivx(σ0iz ⊗ iz) = 0, (σ0iz ⊗ iz)ir = 0, and (σ0iz ⊗ iz)iz =−p0iz

provided that σ0 =−p0.
There remains to verify that it is possible to associate to this stress state a displacement field respecting the

condition at z = 0. To do this, the constitutive relation expressed in compliance allows us to establish that the
infinitesimal strain tensor is written as:

–ε(x) =−1+ν

E
p0iz ⊗ iz +

ν

E
(tr –σ)I

with tr –σ =−p0, hence:

–ε(x) =− p0

E
iz ⊗ iz +

ν p0

E

(
ir(θ)⊗ ir(θ)+ iθ (θ)⊗ iθ (θ)

)

which shows the vertical settlement of the bar, along with a radial expansion related to Poisson’s effect.
Considering the axisymmetry of the problem, we will see in paragraph 5.3.2 that the displacement field can then

be expressed as:

u(x) = ur(r,z)ir(θ)+uz(r,z)iz
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and must then satisfy:
∂ur

∂ r
= εrr =

ν p0

E
ur

r
= εθθ =

ν p0

E
∂uz

∂ z
= εzz =− p0

E
∂ur

∂ z
+

∂uz

∂ r
= 2εrz = 0

The second equation allows us to directly determine that the radial displacement ur depends on r only:

ur(r,z) =
ν p0

E
r = ur(r)

which implies, using the fourth equation, that the vertical displacement uz depends on z only. Finally, the third
equation allows us to establish that:

uz(z) =− p0

E
z

considering the contact condition with the support: uz(0) = 0. The displacement field therefore represents the vertical
settlement, along with a radial expansion, of the bar under the action of the upper pressure p0:

u(x) =− p0

E
ziz +

ν p0

E
rir(θ)

■

! It is essential to be able to satisfy all the equations and boundary conditions in order to state
that the displacement field – stress field pair is the solution to the problem. In particular, it is
essential to be able to determine a displacement field whose gradient tensor’s symmetrical
part corresponds to the infinitesimal strain tensor associated with the stress tensor through the
constitutive relation.

Thus, the stress field determined in the case of Example ?? (on page ??), which deals with a
bar subjected to the action of gravity, is not the mere solution to the problem, because it is not
possible to associate a displacement field satisfying all the kinematic equations.

4.3 Thermoelastic behaviour for infinitesimal deformations

We have seen above how to describe the mechanical behaviour of a material in the linear elastic
region; the parameters that describe it (at a given point when the material is heterogeneous,
otherwise globally) are generally not intrinsic constants but may depend on factors related to the
environment, such as temperature for example. These latter factors can also have a direct influence
on the form of the constitutive relation: the most striking example is the account for temperature
variations, which we will detail in the following.

4.3.1 Linear thermoelasticity framework

The principle is to take into account in the constitutive relation what is called “thermal expansion”.
From a thermodynamic point of view, temperature represents the average kinetic energy of atoms
in matter, and thus influences interatomic bonds. Indeed, a temperature increase tends to increase
the energy of atoms, which begin to oscillate around their respective equilibrium positions: the
amplitude of these oscillations is as in Figure 4.7 where we add to the energy corresponding
to the minimum of potential (associated with the reference equilibrium position, of interatomic
distance r0) the energy of thermal origin. Since the potential curve is not symmetrical with respect
to this minimum, the oscillation is made around a new equilibrium position that is at a greater
distance (r1 > r0), and this all the more so as the temperature increase is significant. This allows for
explaining the phenomenon of thermal expansion which becomes visible on a macroscopic scale.
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Figure 4.7: Interatomic potential: effect of the increase in energy due to an increase in temperature.

To take this phenomenon into account, it can be assumed that the infinitesimal “total” strain
tensor –εt (which is related to the displacement field) is calculated as the sum of the infinitesimal
elastic strain tensor (noted –εe, and associated with the stress tensor) and an infinitesimal thermal
strain tensor –εth:

1
2

(
Dxu+(Dxu)T

)
= –εt = –εe + –εth =CCC

−1 –σ+ –εth

Infinitesimal thermal strain tensor. For most solids, we can see that, for a given temperature
range, thermal expansion is proportional to the temperature increase; if, moreover, this expansion
is the same in all directions, we can therefore propose an isotropic tensor, defined as:

–εth = α∆T I

where ∆T = T −Tref is the temperature variation with respect to a reference temperature Tref,
and α is called the “coefficient of thermal expansion”, which is expressed in K−1.

Table 4.2 gives some typical values of the coefficients of thermal expansion for several com-
monly used materials; these are given at room temperature, knowing that temperature can have a
strong influence on the value of these coefficients.

R Some materials, such as long-fiber composites shown in Figure 3.16, may have different coefficients of
thermal expansion depending on the directions considered; in this case, the infinitesimal thermal strain
tensor is written in terms of a symmetrical second-order tensor –α:

–εth = (∆T ) –α

4.3.2 Dealing with a thermoelasticity problem

A thermoelasticity problem is solved in the same way as a problem purely based on mechanics. For
this purpose, we assume that we know the temperature field T (x, t) at all points x of the domain and
each instant t, and we replace the purely mechanical constitutive relation by the following relation.
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Material Coefficient of thermal expansion (K−1)

diamond 1×10−6

silicon carbide 2.8×10−6

glass (pyrex) 3.2×10−6 – 4×10−6

tungsten 4.5×10−6

glass 8.5×10−6

titanium 8.6×10−6

cast iron 1.1×10−5

concrete 1.2×10−5

structural steels 1.1×10−5 – 1.3×10−5

stainless steel 1×10−5 – 1.7×10−5

copper 1.7×10−5

bronze 1.8×10−5

brass 1.9×10−5

aluminum 2.3×10−5

Table 4.2: Typical values for various materials of the coefficient of thermal expansion (at room
temperature).

Summary 4.2 — Isotropic linear thermoelastic material. In the case of an anisothermal
evolution, the constitutive relation between the stress and infinitesimal strain tensors is written,
in the case of an isotropic linear thermoelastic material:

1
2

(

Dxu(x, t)+
(
Dxu(x, t)

)T
)

= –εt(x, t) =CCC
−1(x) –σ(x, t)+α(x)∆T (x, t)I

=
1+ν(x)

E(x)

–σ(x, t)+

(

α(x)∆T (x, t)− ν(x)

E(x)
tr –σ(x, t)

)

I

when expressed in compliance, or:

–σ(x, t) =CCC(x)
(

–εt(x, t)− –εth(x, t)
)
=CCC(x)

(
1
2

(

Dxu(x, t)+
(
Dxu(x, t)

)T
)

−α(x)∆T (x, t)I

)

=
(
λ (x) tr –εt(x, t)− (3λ (x)+2µ(x))α(x)∆T (x, t)

)
I+2µ(x) –εt(x, t)

when expressed in stiffness, with CCC the elasticity tensor. α(x) is the coefficient of thermal
expansion of the studied material.

! As seen in Table 4.1, Young’s modulus and Poisson’s ratio, and therefore the elasticity tensor
CCC, depend on temperature; if the variation ∆T is large, then it is not possible to neglect, in all
rigour, this dependence.
The same remark applies to the coefficient of thermal expansion α .

■ Example 4.2 — Thermal loading of a cylindrical bar. We consider a cylindrical bar Ω with a vertical
axis iz, circular cross-section of radius R and height H, placed on a perfectly rigid and fixed support Ω0, on which it
can slide without friction. Compared to a uniform reference temperature T0, the entire bar is raised to a uniform
temperature Tf = T0 +∆T . We assume that the action of gravity can be neglected and that the bar is in static
equilibrium. The material is considered homogeneous and isotropic, and remains within the linear elasticity region,
characterized by a Young’s modulus E, a Poisson’s ratio ν and a coefficient of thermal expansion α , all three assumed
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to be temperature independent.

The equation to be solved at every point of the domain is therefore:

divdivdivx –σ = 0

knowing that the constitutive relation expressed in compliance is written at any point as:

1
2

(
Dxu+(Dxu)T

)
=CCC

−1 –σ+α∆T I

As in Example 4.1, introducing the cylindrical vector basis (ir(θ), iθ (θ), iz) associated with the cylinder, we assume
that the displacement field can be written as:

u(x) = ur(r,z)ir +uz(r,z)iz

which implies that the infinitesimal total strain tensor takes the following form:

–εt(x) = –ε =
∂u

∂ r
(x)⊗S ir(θ)+

∂u

∂θ
(x)⊗S

iθ (θ)

r
+

∂u

∂ z
(x)⊗S iz

∂ur

∂ r
(r,z)ir(θ)⊗ ir(θ)+

ur(r,z)
r

iθ (θ)⊗ iθ (θ)+
∂uz

∂ z
(r,z)iz ⊗ iz

+

(
∂ur

∂ z
(r,z)+

∂uz

∂ r
(r,z)

)

ir(θ)⊗S iz

With regard to boundary conditions, the assumption of sliding contact with the support allows for writing that
the vertical component of the displacement is equal to zero (maintained contact):

〈
u(z=0) , iz

〉
= 0

while the contact forces are purely normal (frictionless contact):
〈

–σ(z=0)(−iz), ir
〉
= 0 =

〈

–σ(z=0)(−iz), iθ
〉

In addition, the lateral and upper surfaces are free of forces:

–σ(r=R)ir = 0 = –σ(z=H)iz

It is then easily verified that a zero stress tensor satisfies all the equations related to stresses; this implies that:

1
2

(
Dxu+(Dxu)T

)
= α∆T I

or, in terms of scalar equations:
∂ur

∂ r
(r,z) = α∆T

ur(r,z)
r

= α∆T

∂uz

∂ z
(r,z) = α∆T

∂ur

∂ z
(r,z)+

∂uz

∂ r
(r,z) = 0

whose solution is:
ur(r,z) = (α∆T )r

uz(r,z) = (α∆T )z
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considering the boundary condition in z = 0: uz(r,0) = 0, ∀r. As expected, we find a uniform thermal expansion of
the cylinder.

If, now, we imagine that, instead of being free, the upper surface of the cylinder is in frictionless contact with
the same fixed support Ω0, the free boundary condition in z = H is replaced by a condition concerning the vertical
component of the displacement:

〈
u(z=H) , iz

〉
= 0

and the nullity of the horizontal components of the stress vector:
〈

–σ(z=H)iz , ir
〉
= 0 =

〈

–σ(z=H)iz , iθ
〉

It is then proposed to seek the solution in displacement in a form similar to that found in the previous situation:

u(x) = arir +bziz

where a and b are two constants to be determined. This displacement automatically satisfies the boundary condition
in z = 0, since

〈
u(z=0) , iz

〉
= 0; for it to satisfy the condition in z = H as well, we must have bH = 0, i.e.:

b = 0

Therefore, the infinitesimal total strain tensor is written, at every point, as:

–εt =
1
2

(
Dxu+(Dxu)T

)
= a(ir ⊗ ir + iθ ⊗ iθ )

which makes it possible to obtain the stress tensor using the constitutive relation:

–σ =CCC( –εt −α∆T I) =
νE

(1+ν)(1−2ν)

(
tr( –εt −α∆T I)

)
I+

E
1+ν

( –εt −α∆T I)

hence, considering tr( –εt −α∆T I) = 2a−3α∆T :

–σ =
E

1−2ν

(( a
1+ν

−α∆T
)

(ir ⊗ ir + iθ ⊗ iθ )+
( 2νa

1+ν
−α∆T

)

iz ⊗ iz

)

It is then easily verified that this stress tensor satisfies the local equilibrium equation:

divdivdivx –σ =
∂ –σ

∂ r
ir +

∂ –σ

∂θ

iθ

r
+

∂ –σ

∂ z
iz

=
E

1−2ν

(
a

1+ν
−α∆T

)

(iθ ⊗ ir + ir ⊗ iθ − ir ⊗ iθ − iθ ⊗ ir)
iθ

r
= 0

In addition, the stress vector on the upper and lower surfaces is collinear to iz:

–σ(z=H)iz =
E

1−2ν

( 2νa
1+ν

−α∆T
)

iz =− –σ(z=0)(−iz)

Finally, the free boundary condition on the lateral surface allows us to determine the constant a:

0 = –σ(r=R)ir =
E

1−2ν

( a
1+ν

−α∆T
)

ir

hence:
a = (1+ν)α∆T
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which leads to the conclusion that the stress tensor is homogeneous, and is:

–σ =−Eα∆T iz ⊗ iz

This allows us to observe that, since thermal expansion is hindered along the cylinder axis, a uniaxial compressive
stress of thermal origin develops, proportional to Young’s modulus and to the product of the coefficient of thermal
expansion by the temperature variation. Conversely, expansion can occur freely in the radial direction:

u(x) = (1+ν)α∆T rir(θ)

–ε = (1+ν)α∆T
(
ir(θ)⊗ ir(θ)+ iθ (θ)⊗ iθ (θ)

)

which implies that there is no radial (or circumferential) stress.

Indeed, if we study a last situation, where, this time, the entire surface of the cylinder is constrained (by placing
it for example in a perfectly rigid, hollow mass of cylindrical shape with the same radius R), we find that there is no
movement within the bar:

u(x) = 0, ∀x

which implies that the stress tensor is of thermal origin only (since –εt = 0):

–σ =CCC(−α∆T I) =−Eα∆T
1−2ν

I

and corresponds to a uniform and isotropic compression state. ■

4.4 Summary of important formulas

Isotropic linear elastic material – Summary 4.1 page 107

–σ =CCC –ε = λ (tr –ε)I+2µ –ε

–ε =CCC
−1 –σ =

1+ν

E

–σ− ν

E
(tr –σ)I

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

E =
µ(3λ +2µ)

(λ +µ)
, ν =

λ

2(λ +µ)

Isotropic linear thermoelastic material – Summary 4.2 page 112

1
2

(
Dxu+(Dxu)T

)
= –εt =CCC

−1 –σ+α∆T I=
1+ν

E

–σ+
(

α∆T − ν

E
tr –σ
)

I

–σ =CCC( –εt − –εth) =CCC

(
1
2

(
Dxu+(Dxu)T

)
−α∆T I

)

=
(
λ tr –εt − (3λ +2µ)α∆T

)
I+2µ –εt





5. Infinitesimal elasticity

The previous chapters have allowed us to set all the equations and conditions necessary
to solve a mechanical problem within the framework of isotropic linear elasticity; this
is essential for an engineer since many structures are designed to operate in the elastic
region. The task now is to study the properties of the solutions to these problems, and
to propose analytical (useful for preliminary design projects) or numerical solution
strategies.

WHY STUDY ELASTICITY?

5.1 Posing an elasticity problem

The objective is to review the equations and boundary conditions necessary and sufficient to
determine the solution of a linear elasticity problem under the infinitesimal deformation hypothesis
and for isothermal evolution. We remind that this solution, whose main mathematical properties
we will describe, consists of a displacement vector u, a (symmetrical) infinitesimal strain tensor –ε

and a (symmetrical as well) stress tensor –σ, which are a priori all functions of space and time. A
specific example, dealing with the case of a gravity dam subjected to the hydrostatic pressure of
water, and illustrated in Figure 5.1, summarizes all the equations and conditions to be taken into
account to solve the (static) problem.

5.1.1 Equations to be solved

These equations are those defined within the material domain Ω under study. The first one, which
could be described as fundamental, is the one resulting from the conservation of momentum,
obtained in Paragraph 2.3.1, which involves the volume force density fV assumed known at any
point within Ω:

ρ(x, t)a(x, t) = fV (x, t)+divdivdivx –σ(x, t), ∀x ∈ Ωt , ∀t

on which we will focus here a little more, in the context of the infinitesimal deformation hypothesis.
By definition, the acceleration is that of the particle located in x at time t, i.e., using the results of
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Figure 5.1: Review of all the equations and boundary conditions for an elasticity problem.

Paragraph 1.1.2:

a(x, t) = a(f(p, t), t) =
∂ 2f

∂ t2 (p, t) =
∂ 2
(
p+u(p, t)

)

∂ t2 =
∂ 2u

∂ t2 (p, t) =
..

u(p, t)

In addition, the conservation of mass, obtained in Paragraph 1.4.2, makes it possible to establish,
for the density, that:

ρ(x, t) =
ρ0(p)

detF(p, t)
≈ ρ0(p)

(
1−divp u(p, t)

)

and, since ∥u(p, t)∥ ≪ L , ∀p ∈ Ω0 (where L is the characteristic size of the domain), one can
neglect |divp u(p, t)| ≪ 1, which finally results in:

ρ(x, t)a(x, t)≈ ρ0(x)
..

u(x, t)

by considering p ≈ x because of the framework of the infinitesimal deformation hypothesis, and
finally keeping x as the spatial variable. This results in:

ρ0(x)
..

u(x, t) = divdivdivx –σ(x, t)+ fV (x, t), ∀x ∈ Ω, ∀t

Besides, the equation expressing the infinitesimal strain tensor as the symmetrical part of the
deformation gradient tensor is verified at any point in the domain, and at any time, on the one hand:

–ε(x, t) =
1
2

(

Dxu(x, t)+(Dxu(x, t))T
)

, ∀x ∈ Ω, ∀t

and, on the other hand, the constitutive relation (linear elastic and isotropic) between the stress and
infinitesimal strain tensors, expressed in stiffness:

–σ(x, t) =CCC(x) –ε(x, t) = λ (x)
(

tr –ε(x, t)
)
I+2µ(x) –ε(x, t), ∀x ∈ Ω, ∀t

or in compliance:

–ε(x, t) =CCC
−1(x) –σ(x, t) =

1+ν(x)

E(x)

–σ(x, t)− ν(x)

E(x)

(
tr –σ(x, t)

)
I, ∀x ∈ Ω, ∀t

If the values of the material parameters can depend on the point under study, in practice we will
rather try to split the material domain Ω into several distinct sub-domains Ωk, on which they can be
considered constant:

λ (x) = λk,µ(x) = µk, ∀x ∈ Ωk or else E(x) = Ek, ν(x) = νk, ∀x ∈ Ωk
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It will then be important to express the conditions required at the interfaces between these different
sub-domains, as we specify below.

R Considering the second derivative with respect to time, it is also necessary to know the initial displace-
ments and velocities of all the points in the domain:

u(x,0) = u0(x), and
.

u(x,0) = v0(x), ∀x ∈ Ω

In the case where the loadings exerted on the material domain are independent of time, the problem is
static, and its solution is independent of time; there is therefore no longer any need to specify initial
conditions.

In the case where the acceleration term (ρ0
..

u) can be neglected at any time in the local equilibrium
equation, but if some quantities are still functions of time in the equations, we speak of a “quasi-static”
problem, which consists in considering that the solution is a sequence of static solutions, parameterized
by time. Once again, no initial conditions are required in this case.

5.1.2 Boundary conditions

As we have already seen in the previous chapters, the boundary conditions expressed on the different
boundaries of the domain allow us to determine the integration constants necessary to solve the
partial differential equations of the previous paragraph.

Conditions on the external boundary

The basic hypothesis is that we have a known condition, either in displacement or in surface forces,
at any point on the external boundary of the domain, and along each direction of space. By noting
this partition ∂Ω = ∂uΩ∪∂σ Ω, with ∂uΩ∩∂σ Ω = /0, where ∂uΩ and ∂σ Ω refer to what concerns
the known displacements ud(x, t) and known surface forces fS(x, t) respectively:

u(x, t) = ud(x, t) ∀x ∈ ∂uΩ, ∀t, and –σ(x, t)n(x) = fS(x, t), ∀x ∈ ∂σ Ω, ∀t

where n(x) is the outer unit normal vector to the domain, at point x.

! It is essential to understand that the boundary partition that has just been established is to be
interpreted in terms of components as well: thus, it is possible at a given point to constrain
only one or two components of the displacement, while the component(s) of the stress vector,
depending on the direction(s) left “free” in displacement, must be imposed. This is also the
case for frictionless contact conditions, as mentioned below.

In the case of a part of the boundary in contact with an perfectly rigid body, supposedly fixed,
several situations may occur:

• if there is adhesion at the contact surface Σc, the points of this surface remain fixed:

u(x, t) = 0, ∀x ∈ Σc, ∀t

• if the contact allows relative movements, and if the associated slips are made without friction,
then it must be expressed that there are no tangential components of the contact surface
forces; if n(x) is the local (outward) normal vector at the contact, we impose thus:

〈
u(x, t),n(x)

〉
= 0, and

〈

–σ(x, t)n(x), t
〉
= 0, ∀t ⊥ n(x), ∀x ∈ Σc, ∀t

where the first condition reflects that the contact is maintained from the kinematic point of
view.
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R It is of course possible to generalize the above conditions to the case of a rigid body in motion; the
movement of this latter can then be a translation, or a small rotation (or the combination of these two

“rigid body movements”), as for example:

u(x, t) = ϕ(t)e∧ (x−xO)

in the case of a (small) rotation of angle ϕ(t) around the axis e and of center xO, as mentioned in
Appendix A.2.6.

In some cases, local surface forces are not known precisely on the surface Σd where they are
applied, and it is only possible to impose the expressions Rd(t) and Md

xO
(t) respectively of the

resultant force and the moment (expressed at point xO) of these forces:

∫

Σd

–σ(x, t)n(x)dSx = Rd(t), ∀t
∫

Σd

(x−xO)∧
(

–σ(x, t)n(x)
)

dSx = Md
xO
(t), ∀t

■ Example 5.1 — Torsion of a cylindrical shaft of arbitrary cross-section: equations review. We
are interested here in the torsion of a cylindrical shaft, of axis e and height H, and whose cross-section can be of
arbitrary shape. We assume that the loadings are applied in a sufficiently progressive manner so that it is possible
to consider a quasi-static framework. Besides, we consider that the action of gravity can be neglected. Finally, we
assume that the constitutive material is isotropic homogeneous, in the linear elasticity region, and that we can adopt
the infinitesimal deformation hypothesis. The equations within the domain are therefore as follows:

0 = divx –σ

–ε =
1
2

(
Dxu+(Dxu)T

)

–σ = λ (tr –ε)I+2µ –ε

In terms of boundary conditions, the purpose of the test machine is to apply a moment around the axis e to
each end of the specimen so that the two end cross-sections rotate relative to each other by a certain angle around e.
However, it is not possible to know precisely the local distribution of the surface forces exerted on the end surfaces
Σ0 (in x3 = 0) and ΣH (in x3 = H), which implies that we will only try to verify that:

∫

ΣH

(x−xH)∧ ( –σe)dSx = MH
d e

∫

ΣO

(x−xO)∧
(

–σ(−e)
)

dSx = MO
d e

where the moments can be calculated at the centers of the end cross-sections for example (respectively xO and xH ).
In both cases, these moments are actually “couples”, because the resultant forces of the machine’s actions on both
ends of the shaft are equal to zero:

∫

ΣH

–σedSx = 0

∫

ΣO

–σ(−e)dSx = 0

Finally, the lateral surfaces are free of forces. ■

Conditions on an internal interface

Additional conditions are required when the studied material domain is split into several sub-
domains with different (generally homogeneous) properties: in this case, on these interfaces Σi

between the sub-domains, it is necessary to specify conditions for the displacement and the stress
vector simultaneously, since nothing is known a priori.

Thus, in the typical case of a perfect adhesion interface between two sub-domains Ωk and
Ωl , we must write, on the one hand, the continuity of the displacement vector (since the glueing
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constrains the interface points to satisfy simultaneously the expressions of the displacements u k

and u l respectively associated with Ωk and Ωl):

u k (x, t) = u l (x, t), ∀x ∈ Σi, ∀t

and, on the other hand, the continuity of the stress vector that had been established in Para-
graph 2.3.2:

–σ k (x, t)n(x) = –σ l (x, t)n(x), ∀x ∈ Σi, ∀t

where n(x) is the local normal vector to Σi, of arbitrarily fixed sense.

R Other interface conditions are of course possible. If, for example, the two deformable media can slide
without friction, only the normal components are bound:

〈
u k (x, t),n(x)

〉
=
〈

u l (x, t),n(x)
〉
, and

〈
–σ k (x, t)n(x),n(x)

〉
=
〈

–σ l (x, t)n(x),n(x)
〉
, ∀x ∈ Σi, ∀t

knowing that we also have:

〈

–σ k (x, t)n(x), t
〉
= 0 =

〈

–σ l (x, t)n(x), t
〉
, ∀t ⊥ n(x), ∀x ∈ Σi, ∀t

Summary 5.1 — Generic formulation of an elasticity problem. Knowing:
• the volume force density fV exerted at any point inside the material domain Ω;
• the surface force density fS exerted at any point of the part ∂σ Ωt of the external boundary

∂Ω of the domain;
• the displacement ud constrained at any point of the complementary part ∂uΩ of the

external boundary ∂Ω;
the problem is to find the fields (u, –ε, –σ) satisfying the following equations and conditions:

1. kinematic equations and conditions:

–ε(x, t) =
1
2

(

Dxu(x, t)+
(
Dxu(x, t)

)T
)

, ∀x ∈ Ω, ∀t

u(x, t) = ud(x, t) ∀x ∈ ∂uΩ, ∀t

2. stress equations and conditions:

ρ0(x)
..

u(x, t) = divdivdivx –σ(x, t)+ fV (x, t), ∀x ∈ Ω, ∀t

–σ(x, t)n(x) = fS(x, t), ∀x ∈ ∂σ Ω, ∀t

3. constitutive relation:

–σ(x, t) =CCC(x) –ε(x, t) = λ (x)
(

tr –ε(x, t)
)
I+2µ(x) –ε(x, t), ∀x ∈ Ω, ∀t

–ε(x, t) =CCC
−1(x) –σ(x, t) =

1+ν(x)

E(x)

–σ(x, t)− ν(x)

E(x)

(
tr –σ(x, t)

)
I, ∀x ∈ Ω, ∀t

4. initial conditions:

u(x,0) = u0(x), et
.

u(x,0) = v0(x), ∀x ∈ Ω

In the case where several material (sub)domains are studied, additional conditions on
displacements and stress vectors are to be expressed on the associated interfaces.
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5.1.3 Solution properties

Once all the boundary conditions detailed in the previous paragraph have been imposed, it is
possible to prove mathematically that there is a solution to the problem. However, a particular case
is to be studied; in the static case, if no kinematic conditions are imposed (∂uΩ = /0), there can only
be a solution if the material domain under study is actually in static equilibrium, i.e. if:

∫

Ω
fV dVx +

∫

∂Ω
fS dSx = 0

∫

Ω
(x−xO)∧ fV dVx +

∫

∂Ω
(x−xO)∧ fS dSx = 0

at a given fixed point O.
Another mathematical property, which we will study here, is the uniqueness of the solution,

which will allow specific solution strategies to be implemented, as detailed in Paragraph 5.2.

Unicity in the static framework

Suppose that we are able to obtain two displacement solutions u1 and u2 of the same problem on
the domain under study; they then both (k = 1 or k = 2) satisfy within this domain all the equations
in the static framework:

0 = divdivdivx –σk + fV

–σk =CCC –εk

–εk =
1
2

(

Dxuk +(Dxuk)
T

)

as well as the following boundary conditions:

uk = ud on ∂uΩ, and –σkn = fS on ∂σ Ω

Subtracting two by two all these equations, we see that the difference w = u1 −u2 between the two
solutions is itself a solution to an elasticity problem with zero volume forces:

0 = divdivdivx –σ1 −divdivdivx –σ2 = divdivdivx –σw

–σw = –σ1 − –σ2 =CCC –ε1 −CCC –ε2 =CCC –εw

–εw = –ε1 − –ε2 =
1
2

(
Dxu1 +(Dxu1)

T
)
− 1

2

(
Dxu2 +(Dxu2)

T
)
= 1

2

(
Dxw+(Dxw)T

)

and whose boundary conditions are also zero:

w = 0 on ∂uΩ, and –σwn = 0 on ∂σ Ω

By calculating the scalar product of the local equilibrium equation by w, then integrating on the
domain, we find that: ∫

Ω

〈
divdivdivx –σw ,w

〉
dVx = 0

Then using the formula divx(A
Ta) =

〈
divdivdivxA, a

〉
+ tr

(
A(Dxa)T

)
set out in Appendix B.1.1, we

then obtain:

−
∫

Ω
tr
(

–σw(Dxw)T)dVx +
∫

Ω
divx( –σT

ww)dVx = 0

By using the divergence formula (detailed in Appendix B.2.2), we now transform the second
integral to get:

∫

Ω
tr
(

–σw(Dxw)T)dVx =
∫

Ω
divx( –σT

ww)dVx =
∫

∂Ω

〈

–σT

ww,n
〉

dSx =
∫

∂Ω

〈

–σwn,w
〉

dSx = 0
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since, on the boundary, we have either w = 0, or –σwn = 0. Since –σw is symmetrical, we can write
that:

0 =
∫

Ω
tr
(

–σw(Dxw)T)dVx =
∫

Ω
tr
(

–σwDxw)dVx =
∫

Ω
tr( –σw –εw)dVx

and, by expressing the constitutive relation using Lamé’s parameters, it is finally established that:
∫

Ω

(
λ (tr –εw)

2 +2µ tr( –ε2
w)
)

dVx = 0

Since λ > 0 and µ > 0, we deduce that tr( –ε2
w) = ∥ –εw∥2 = 0, and therefore, necessarily, that:

–εw = 0

To go back to the displacement w, we can write the equations verified by the components
wk(x1,x2,x3) of w in a Cartesian vector basis (i1, i2, i3):

∂w1

∂x1
= 0,

∂w2

∂x2
= 0,

∂w3

∂x3
= 0

∂w1

∂x2
+

∂w2

∂x1
= 0,

∂w1

∂x3
+

∂w3

∂x1
= 0,

∂w2

∂x3
+

∂w3

∂x2
= 0

Differentiating the first equation of the second line with respect to x1, we establish that:

0 =
∂

∂x1

(
∂w1

∂x2
+

∂w2

∂x1

)

=
∂ 2w1

∂x1∂x2
+

∂ 2w2

∂x2
1

=
∂ 2w2

∂x2
1

since w1 does not depend on x1 (considering the first equation of the first line). By doing the same
for x3, then with the other components, we can establish that:

∂ 2wk

∂x2
l

= 0, 1 ≤ k ≤ 3, 1 ≤ l ̸= k ≤ 3

which implies that:

wk = ak +bklxl + ckmxm, , 1 ≤ k ≤ 3, 1 ≤ l ̸= k ≤ 3, 1 ≤ m ̸= k,m ̸= l ≤ 3

where the coefficients ak, bkl and ckm are constant. By injecting these forms into the equations
involving cross-derivatives:

∂w1

∂x2
+

∂w2

∂x1
= 0,

∂w1

∂x3
+

∂w3

∂x1
= 0,

∂w2

∂x3
+

∂w3

∂x2
= 0

we conclude that the different coefficients bkl and ckm are opposite two by two, and that w is an
rigid body displacement (with the infinitesimal deformation hypothesis):

w = a+b∧ (x−xO)

consisting in the sum of an arbitrary translation and an arbitrary (small) rotation.
Finally, we know that w vanishes on ∂uΩ; if it is actually a surface, then this implies that w = 0

everywhere, and therefore that the solution is unique; on the other hand, if there is no constrained
displacement condition (∂uΩ = /0), or if ∂uΩ is reduced to a point or a line, the solution is not
unique, resulting in an arbitrary (infinitesimal) rigid body movement.

R The conclusions are the same in the quasi-static framework: indeed, since we can consider that it is a
sequence of equilibrium states, it is sufficient to apply the previous reasoning at each time.
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■ Example 5.2 — Torsion of a cylindrical shaft of arbitrary cross-section: existence and uniqueness
of the solution. We go on with Example 5.1 by analyzing the expected properties for the solution.

On the one hand, it is a problem where no constrained displacement condition is specified (∂uΩ = /0); as we
consider (quasi)static equilibrium, it is necessary, for the solution to exist, that the actions exerted on the specimen
compensate each other, which implies that the two applied couples must be opposed to each other, at each time t:

MH
d (t) =−MO

d (t) =C(t)

On the other hand, since we have only imposed global conditions in terms of resultant forces and moments
rather than local force densities, there can be no uniqueness of the solution. We will see in Example 5.6 how to
affirm that we can find a solution in terms of stress field that makes sense concerning our problem. Moreover, since
∂uΩ = /0, the displacement associated with the stress field is theoretically defined by an arbitrary (small) rigid body
movement, but we can take this latter as zero because it is not relevant in the studied problem. Indeed, we will only
need to know the angular difference between the two extreme cross-sections to determine the torsional stiffness of
the specimen. ■

Unicity in the dynamic framework

The approach is similar when we take into account the dynamic terms; by defining w = u1 −u2

as the difference between two solution displacement fields, we see that w satisfies exactly the
same equations as in the static framework, except the local equilibrum equation which keeps the
acceleration term:

ρ0
..

w = divdivdivx –σw

and zero initial conditions on the domain Ω:

w = 0, and
.

w = 0, for t = 0

Calculating the scalar product of the equilibrium equation by
.

w, and integrating it spatially on the
domain, between the initial time τ = 0 and the current time τ = t, we obtain:

∫ t

0

∫

Ω

〈
ρ0

..

w,
.

w
〉

dVx dτ =
∫ t

0

∫

Ω

〈
divdivdivx –σw ,

.

w
〉

dVx dτ

The left-hand side can be simplified, by seeing that
〈

ρ0
..

w,
.

w
〉
= ρ0

.

︷ ︷
〈

.

w,
.

w
〉
, while the right-hand

side can be transformed in the same way as in the static case, to finally get:

∫

Ω
ρ0
∥
∥

.

w
∥
∥

2
dVx =−

∫ t

0

∫

Ω
tr( –σw

.

–εw)dVx dτ =−
∫ t

0

∫

Ω
tr(CCC –εw

.

–εw)dVx dτ =−
∫

Ω
tr(CCC –ε2

w)dVx

because tr(CCC –εw
.

–εw) =

.

︷ ︷

tr(CCC –ε2
w), and the initial conditions are equal to zero; this results in:

∫

Ω

(

ρ0
∥
∥

.

w
∥
∥

2
+λ (tr –εw)

2 +2µ tr( –ε2
w)
)

dVx = 0

Since ρ0 > 0, we conclude that
.

w(x, t) = 0, ∀x ∈ Ω, ∀t, and therefore that w is independent of
time, hence, finally, since the initial conditions are equal to zero:

w(x, t) = 0, ∀x ∈ Ω, ∀t

In the dynamic framework, there is therefore systematically uniqueness of the solution.
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5.2 Methods for solving an elasticity problem

Now that we have specified all the equations and boundary conditions, it remains to study here
from what angle to approach the problem in order to solve it effectively. In practice, apart from the
constitutive relation, each equation (or condition) concerns either the kinematic aspect (through the
displacement field u or the infinitesimal strain tensor –ε, as well as through the imposed boundary
conditions), or the force aspect (through the stress tensor –σ and the surface forces applied to the
domain); it therefore seems wise to choose with which strategy we therefore wish to deal with the
problem.

5.2.1 Displacement approach

A first possibility is to favour the kinematic aspect: indeed, it is often simpler to make hypotheses
about displacements, which are closer to the mechanical intuition that one can have of the problem,
than about the stress field, often more complex, and which presents a priori twice as many unknown
components.

Displacement solution strategy

The starting point is to give oneself an a priori form u f d for the displacement you are looking for:
this can consist in:

• eliminating components that are suspected to be equal to zero;
• eliminate dependencies on certain spatial variables, knowing that the question of time

dependence can be decided whether we can assume that the problem can be solved in a
(quasi-)static framework, or not;

• propose forms that make sense mechanically: translation, small rigid body rotation, elonga-
tion, shear strain, . . .

If nothing can be proposed, we remain with the most general form for the displacement field, which
then presents three components that each depend on the three variables of space. On the other hand,
the choice of the vector basis for expressing the components should be as judicious as possible: for
example, if the domain is cylindrical, a cylindrical vector basis associated with this geometry is
quite naturally adapted.

The strategy then consists in successively verifying the different equations and boundary
conditions to be able to conclude whether the proposed form is the solution to the problem;
indeed, if everything is verified, the uniqueness property (except for a possibly arbitrary rigid
body movement, in some cases) established in Paragraph 5.1.3 guarantees that we have the “true”
solution. The steps are, therefore, as follows:

1. we start by expressing the boundary conditions in displacement using the form proposed for
this latter, which possibly allow us to specify it a little more:

u f d = ud on ∂uΩ

2. the infinitesimal strain tensor is calculated, then the stress tensor using the elastic constitutive
relation:

–ε f d =
1
2

(

Dxu f d +(Dxu f d)
T

)

–σ f d =CCC –ε f d

3. the local equilibrium equation is introduced, either to check that the stress tensor satisfies it,
or to deduce from it (a) differential equation(s) that must be verified by the functions that
have yet to be determined:

divdivdivx –σ f d + fV = ρ0
..

u f d
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4. the boundary conditions are specified in terms of applied (surface) force densities, either to
verify that the stress tensor satisfies them, or to deduce from them integration constants in
order to solve the previous differential equation(s):

–σ f dn = fS on ∂σ Ω

Once these steps have been completed, several situations are possible:
• either we have verified all the equations and boundary conditions: we can then say that we

have determined the “true” solution to the problem, consisting of u = u f d , and, consequently,

–σ = –σ f d and –ε = –ε f d ;
• either a boundary condition (or even an equation) is not verified exactly: it may be possi-

ble, with the considerations of Paragraph 5.2.3, to conclude that the form adopted for the
displacement is actually an approximate solution;

• or we have arrived at (a) differential equation(s) with associated boundary condition(s): if we
can solve it (them) analytically, we then hold the “true” solution of the problem; otherwise, it
may be possible to establish an approximate solution, as proposed in Paragraph 5.2.3.

■ Example 5.3 — Torsion of a cylindrical shaft of arbitrary cross-section: displacement approach.
We propose here to solve by a displacement approach the torsion problem of a shaft of arbitrary cross-section, in
the framework of the infinitesimal deformation hypothesis, whose equations and boundary conditions have been
specified in Example 5.1.

It is now necessary to propose a “reasonable” form for the sought displacement field; we know that, in the
case of the torsion of a cylindrical shaft of revolution, the different cross-sections rotate, around the axis e of the
shaft, as rigid bodies with respect to each other. On the other hand, experiments show that, for other shapes, the
cross-sections do not remain plane because a heterogeneous axial displacement is visible on them: we speak then
of “warping”. We are therefore led to choose as a displacement field, in a Cartesian vector basis (i1, i2, i3 = e), of
associated coordinates (x1,x2,x3) centered on the cylinder axis, the association of a small rigid body rotation (of
angle a function of the cross-section coordinate) around e and a heterogeneous displacement field along e:

u f d(x1,x2,x3) = α
(
x3e∧xΣ +ϕ(x1,x2)e

)

where xΣ = x1i1 + x2i2 stands for the position vector of the points of the cross-section Σ, and where α is called the
angle of twist per unit length, or “rate of twist”, which is the relative rotation angle between the two end cross-sections
divided by the height of the shaft. The quantity αϕ then represents the warping, which is assumed to be identical in
each cross-section.

Since there are no displacement conditions to be verified, the next step is to calculate the infinitesimal strain
tensor as:

–ε f d =
1
2

(

Dxu f d +(Dxu f d)
T

)

with:

Dxu f d =
3

∑
k=1

∂u f d

∂xk
⊗ ik =

2

∑
k=1

α

(

x3e∧ ik +
∂ϕ

∂xk
e

)

⊗ ik +α(e∧xΣ)⊗ e

hence:

–ε f d = α (∇∇∇xΣ ϕ + e∧xΣ)⊗S e

because
2

∑
k=1

(
(e∧ ik)⊗ ik

)T
=−

2

∑
k=1

(e∧ ik)⊗ ik, and
∂ϕ

∂x1
i1 +

∂ϕ

∂x2
i2 =∇∇∇xΣ ϕ .

Since tr –ε = 0, we deduce from this that the stress tensor is expressed directly as:

–σ f d = 2µ –ε f d = 2µα (∇∇∇xΣ ϕ + e∧xΣ)⊗S e

This latter must then satisfy the local equilibrium equation, i.e.:

0 = divdivdivx –σ =
3

∑
k=1

∂ –σ

∂xk
ik = µα

(

∂ 2ϕ

∂x2
1

+
∂ 2ϕ

∂x2
2

)

e
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which shows, on the one hand, that the torsion kinematics induces a stress field that is compatible with the local
equilibrium equation, and, on the other hand, that the warping has to satisfy:

∆xΣ ϕ = 0

In addition, the applied surface force conditions must be taken into account; first, the lateral surfaces Σl must be
free of forces, i.e.:

0 = –σ f dnl = 2µα
(
(∇∇∇xΣ ϕ + e∧xΣ)⊗S e

)
nl = µα

〈
∇∇∇xΣ ϕ + e∧xΣ ,nl

〉
e

at every point of Σl , with outer unit normal vector nl ⊥ e. By defining tl = e∧nl as the vector (perpendicular to the
axis e) tangent to the surface, we then obtain that the normal derivative of the warping has to satisfy:

∂ϕ

∂n
=
〈
∇∇∇xΣ ϕ ,nl

〉
=
〈

xΣ , tl
〉

at any point on the lateral surfaces Σl . Since the condition is independent of x3, it is sufficient to verify this condition
on the adge of a cross-section of arbitrary coordinate.

Finally, we must find the global conditions imposed by the test machine on the two end surfaces in x3 = 0 and
x3 = H, i.e. zero resultant forces, and moments along e. As regards the calculation of the resultant force of the
machine’s action on the surface ΣH , we find then:

RH =
∫

ΣH

–σ f dedSx =
∫

ΣH

αµ(∇∇∇xΣ ϕ + e∧xΣ)dSx

Using the divergence properties set out in Appendix B.1.1, we can rewrite that:

∇∇∇xΣ ϕ + e∧xΣ = (DxΣ xΣ)(∇∇∇xΣ ϕ + e∧xΣ)

= divdivdivxΣ

(
xΣ ⊗ (∇∇∇xΣ ϕ + e∧xΣ)

)
−divxΣ(∇∇∇xΣ ϕ + e∧xΣ)xΣ

= divdivdivxΣ

(
xΣ ⊗ (∇∇∇xΣ ϕ + e∧xΣ)

)
−divxΣ(∇∇∇xΣ ϕ)xΣ

= divdivdivxΣ

(
xΣ ⊗ (∇∇∇xΣ ϕ + e∧xΣ)

)

considering divxΣ(∇∇∇xΣ ϕ) = ∆xΣ ϕ = 0 by virtue of the equation determined above. Thus, using Stokes’ formula, we
find that:

RH = αµ

∫

ΣH

divdivdivxΣ

(
xΣ ⊗ (∇∇∇xΣ ϕ + e∧xΣ)

)
dSx

= αµ

∫

∂ΣH

(
xΣ ⊗ (∇∇∇xΣ ϕ + e∧xΣ)

)
nl dlx

= αµ

∫

∂ΣH

〈
∇∇∇xΣ ϕ + e∧xΣ ,nl

〉
xΣ dlx = 0

which vanishes because of the condition to be verified on the boundary of a cross-section. The calculation of the
resultant force RO is identical (but for the sign).

As far as the moment is concerned, we can simply show that it is indeed along the direction e, by noting that:

〈
MH , i1

〉
=
∫

ΣH

〈
xΣ ∧ ( –σ f de), i1

〉
dSx =

∫

ΣH

αµ
〈

xΣ ∧ (∇∇∇xΣ ϕ + e∧xΣ), i1
〉

dSx

=
∫

ΣH

αµ
〈
∇∇∇xΣ ϕ + e∧xΣ , i1 ∧xΣ

〉
dSx = 0

since (i1 ∧xΣ)//e. Of course, the same result is obtained with regard to i2.

In order to deal with a practical case, let us consider a solid cross-section of elliptical shape, with semi-axes a
and b along i1 and i2 respectively. The warping function is then searched for in the form:

ϕ(x1,x2) = kx1x2

where k is a constant. We immediately verify that ∆xΣ ϕ = 0 in the cross-section. In addition, the lateral edge
conditions should be as follows:

∂ϕ

∂n
=
〈

xΣ , e∧nl
〉
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where nl is the outer normal vector on the edge of the elliptical cross-section, which is of equation x2
1/a2+x2

2/b2 = 1,
hence: 〈

nl ,
2x1

a2 i1 +
2x2

b2 i2

〉

= 0

We then obtain: 〈

kx2i1 + kx1i2 ,
2x1

a2 i1 +
2x2

b2 i2

〉

=

〈

x1i1 + x2i2 ,
2x1

a2 e∧ i1 +
2x2

b2 e∧ i2

〉

that is:
2kx1x2

a2 +
2kx1x2

b2 =
2x1x2

a2 − 2x2x2

b2

which finally gives that:

k =
b2 −a2

a2 +b2

In the case of a circular cross-section (a = b), we naturally find that torsion occurs without warping (ϕ = 0). ■

Navier’s equation

In the case where no hypothesis is made about the desired displacement field, the previous approach
provides a set of differential equations (and associated boundary conditions) that involve the
displacement field only. Indeed, by injecting the constitutive relation expressed in stiffness into the
local equilibrium equation, we obtain:

ρ0
..

u=divdivdivx –σ+fV =divdivdivx

(
λ (tr –ε)I+2µ –ε

)
+fV = λdivdivdivx

(
(tr –ε)I

)
+µdivdivdivx(Dxu)+µdivdivdivx

(
(Dxu)T

)
+fV

if we assume here that Lamé parameters (λ ,µ) are homogeneous in the domain. By using some
of the formulas of Appendix B.1.2, we can transform the divergences from the previous equation
respectively as:

• divdivdivx

(
(tr –ε)I

)
=∇∇∇x(tr –ε) =∇∇∇x(divx u), where ∇∇∇x refers to the space gradient;

•
〈
divdivdivx(Dxu), c

〉
= divx

(
(Dxu)Tc

)
= divx

(
∇∇∇x

〈
u, c
〉)

= ∆x

〈
u, c
〉
=
〈
∆∆∆xu, c

〉
, ∀c constant,

where ∆∆∆x is the (vector) Laplacian, defined in Appendix B.1.1, and:
•
〈
divdivdivx

(
(Dxu)T

)
, c
〉
= divx

(
(Dxu)c

)
=
〈
∇∇∇x(divx u), c

〉
, ∀c constant, using an arbitrary con-

stant vector c.
The following result is classically called Navier’s equation.

Navier’s equation. The formulation in terms of displacement of a homogeneous isotropic
linear elasticity problem consists in solving the so-called Navier’s equation:

(λ +µ)∇∇∇x

(
divx u(x, t)

)
+µ∆∆∆xu(x, t)+ fV (x, t) = ρ0(x)

..

u(x, t), ∀x ∈ Ω, ∀t

whose scalar projections on a Cartesian vector basis (i1, i2, i3) are established as:

(λ +µ)
3

∑
l=1

∂ 2ul

∂xk∂xl
+µ

3

∑
l=1

∂ 2uk

∂x2
l

+
〈

fV , ik
〉
= ρ0

∂ 2uk

∂ t2 , 1 ≤ k ≤ 3

In addition, in order to determine the integration constants related to the solution of these three
scalar second-order differential equations, we use the following conditions on the external
boundary of the domain:

u(x, t) = ud(x, t) ∀x ∈ ∂uΩ, ∀t, and λ
(

tr –ε(x, t)
)
n(x)+2µ –ε(x, t)n(x) = fS(x, t), ∀x ∈ ∂σ Ω, ∀t

where –ε is the symmetrical part of the displacement gradient tensor, and initial conditions of
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displacement and velocity (except in the static and quasi-static frameworks) are given as:

u(x,0) = u0(x), and
.

u(x,0) = v0(x), ∀x ∈ Ω

Summary 5.2 — Displacement formulation of an elasticity problem. Knowing:
• the volume force density fV exerted at any point inside the material domain Ω;
• the surface force density fS exerted at any point of the part ∂σ Ω of the external boundary

∂Ω of the domain;
• the displacement ud constrained at any point of the complementary part ∂uΩ of the

external boundary ∂Ω;
the problem for a homogeneous material consists in finding the displacement field u verifying
the following equation (called Navier’s equation):

(λ +µ)∇∇∇x

(
divx u(x, t)

)
+µ∆∆∆xu(x, t)+ fV (x, t) = ρ0(x)

..

u(x, t), ∀x ∈ Ω, ∀t

and the following boundary conditions:

u(x, t) = ud(x, t), ∀x∈ ∂uΩ, ∀t, and λ
(

tr –ε(x, t)
)
n(x)+2µ –ε(x, t)n(x) = fS(x, t), ∀x∈ ∂σ Ω, ∀t

as well as the initial conditions:

u(x,0) = u0(x), and
.

u(x,0) = v0(x), ∀x ∈ Ω

! If the material is heterogeneous, two cases are to be studied:

• if the domain can be divided into several sub-domains, which are each of homogeneous
properties, then Navier’s equation can be applied separately to each sub-domain; in
this case, the conditions at the interfaces between sub-domains must also be taken into
account, for example for Ωk and Ωl (with obvious notations):

u k (x, t) = u l (x, t), and CCC
k –ε k (x, t)n(x) =CCC

l –ε l (x, t)n(x), ∀x ∈ Σi, ∀t

where n(x) is the local normal vector to Σi, of arbitrarily fixed sense;
• if this is not possible, then the spatial dependencies of Lamé’s parameters

(
λ (x),µ(x)

)

must be taken into account, hence the appearance of additional terms associated with
the spatial gradients of these parameters.

5.2.2 Stress approach

The alternate possibility is to favour the static aspect; indeed, in some cases, it is possible to propose
directly stress fields, for example when one believes that they should be homogeneous, or evolve
linearly in the domain.

Stress solution strategy

The starting point is thus to give oneself an a priori form for the stress tensor one is looking for, for
example:

• by eliminating components that are suspected to be equal to zero;
• by eliminating dependencies on certain spatial variables, knowing that the question of time

dependence can be decided according to the chosen framework: dynamic, or (quasi-)static;
• by proposing forms that make sense mechanically, especially those that are likely to verify

the local equilibrium equation.
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If nothing can be proposed, then we remain with the most general form for the stress tensor, which
is equivalent to search, in a vector basis that must be judicious concerning the geometry of the
domain, for six scalar components that are functions of the three variables of space.

The strategy then consists in successively verifying the different equations and boundary
conditions to be able to conclude whether the proposed form is the solution to the problem (again
thanks to the uniqueness property of the solution). The steps are, therefore, as follows:

1. we start by expressing the boundary conditions in terms of surface forces using the form
proposed for the stress tensor, which possibly allow us to specify it a little more:

–σ f cn = fS on ∂σ Ω

2. the local equilibrium equation is introduced, either to verify it, or to deduce from it (a)
differential equation(s) that the functions that have yet to be determined must verify; for
example, in the static case, we must verify:

divdivdivx –σ f c + fV = 0

3. the infinitesimal strain tensor is then calculated using the constitutive relation in compliance:

–ε f c =CCC
−1 –σ f c

4. the displacement field is determined, possibly by means of integration constants not yet used,
by solving the relation between the infinitesimal strain tensor and the displacement field:

u f c such that
1
2

(

Dxu f c +(Dxu f c)
T

)

= –ε f c

5. the boundary conditions in displacement are specified, thus making it possible to determine
any integration constants of the previous step:

u f c = ud on ∂uΩ

Once these steps have been completed, the same situations as in the case of the displacement
approach are possible:

• either we have verified all the equations and boundary conditions: we can then say that we
have determined the “true” solution to the problem, consisting of: –σ= –σ f c , and, consequently,
u = u f c and –ε = –ε f c;

• either a boundary condition (or even an equation) is not verified exactly: it may be possible,
with the considerations of Paragraph 5.2.3, to conclude that the form adopted for the stress is
an approximate solution;

• or we have arrived at (a) differential equation(s) with associated boundary condition(s): if we
can solve it (them) analytically, we then hold the “true” solution of the problem; otherwise, it
may be possible to establish an approximate solution, as proposed in Paragraph 5.2.3.

■ Example 5.4 — Torsion of a cylindrical shaft of arbitrary cross-section: stress approach. We
propose here to solve by a stress approach the torsion problem of a shaft of arbitrary cross-section, whose equations
and boundary conditions have been specified in Example 5.1.

For this purpose, a “reasonable” form for the stress tensor is to assume that it has only shear components with
respect to the cylinder axis; we then look for:

–σ f c =−2αµ(e∧∇∇∇xΣ ψ)⊗S e

where α is, as before, the “rate of twist”, and ψ(xΣ) = ψ(x1,x2) is a function of the coordinates in the cross-section.
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With this form, the function ψ automatically satisfies the local equilibrium equation; indeed:

divdivdivx –σ f c =

(

αµ
∂ψ

∂x∂y
−αµ

∂ψ

∂y∂x

)

e = 0

In addition, the stress tensor must satisfy free boundary conditions on the lateral surfaces Σl of the shaft, i.e.:

0 = –σ f cnl =−αµ
〈

e∧∇∇∇xΣ ψ ,nl
〉
e

By setting tl = e∧nl the tangent vector at any point on the lateral surfaces Σl , we obtain that:

〈
∇∇∇xΣ ψ , tl

〉
= 0

or, in other words, ψ must be constant on the boundary of the cross-section.
Finally, it is now essential to verify that we can associate to the infinitesimal strain tensor –ε f c (related to the

stress tensor) a displacement field u f c; since tr –σ f c = 0, we get:
–ε f c =

1
2µ

–σ f c =−α(e∧∇∇∇xΣ ψ)⊗S e

hence, by noting uk the components of u f c in the vector basis (i1, i2, i3 = e):

0 = ε11 =
∂u1

∂x1

0 = ε22 =
∂u2

∂x2

0 = ε33 =
∂u3

∂x3

α
∂ψ

∂x2
= 2ε13 =

∂u1

∂x3
+

∂u3

∂x1

−α
∂ψ

∂x1
= 2ε23 =

∂u2

∂x3
+

∂u3

∂x2

0 = 2ε12 =
∂u1

∂x2
+

∂u2

∂x1

The last equation allows us to establish that:

0 = 2
∂ε12

∂x1
=

∂ 2u1

∂x1∂x2
+

∂ 2u2

∂x2
1

=
∂ 2u2

∂x2
1

0 = 2
∂ε12

∂x2
=

∂ 2u1

∂x2
2

+
∂ 2u2

∂x1∂x2
=

∂ 2u1

∂x2
2

using the first two equations of the system. In addition, since u3 and ψ do not depend on x3, we deduce from this
that:

∂ 2u1

∂x2
3

=
∂ 2u3

∂x1∂x3
−α

∂ 2ψ

∂x2∂x3
= 0

∂ 2u2

∂x2
3

=
∂ 2u3

∂x2∂x3
+α

∂ 2ψ

∂x1∂x3
= 0

which implies that the first two components of displacement are written as:

u1(x2,x3) = a1x2x3 +b1x2 + c1x3 +d1

u2(x1,x3) = a2x1x3 +b2x1 + c2x3 +d2

and by reusing the last equation of the system, it is then established that:

0 =
∂u1

∂x2
+

∂u2

∂x1
= (a1 +a2)x3 +b1 +b2

hence: a1 =−a2 and b1 =−b2.
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From this form, we deduce a necessary condition on the function ψ , namely:

−α

(

∂ 2ψ

∂x2
1

+
∂ 2ψ

∂x2
2

)

= 2
∂ε23

∂x1
−2

∂ε13

∂x2
= a2 −a1 = 2a2

or by identifying a2 = α (rate of twist):

∆xΣ ψ =−2

With this necessary condition, it is then possible to show that it is also possible to determine the u3 component of the
displacement field.

In order to treat a practical case, let us consider once again, as in Example 5.3, a solid cross-section of elliptical
shape, of semi-axes a and b along i1 and i2 respectively. It can then be established that the function:

ψ(x1,x2) =−b2x2
1 +a2x2

2

a2 +b2

satisfies ∆xΣ ψ =−2 in the cross-section, and ψ constant on the edge of the section. ■

! Unlike the displacement approach, the approach proposed above may fail in step 4, when
calculating the displacement field from the infinitesimal strain tensor. Indeed, this is the tricky
point of this approach, because, even if no boundary conditions are applied to the domain, it is
necessary to verify that the infinitesimal strain tensor, which results from the proposed stress
tensor, can be expressed as the symmetrical part of the displacement gradient tensor: this is
the objective of the next paragraph, which establishes the so-called “compatibility equations”.

Compatibility equations

The question of whether, from a given symmetrical tensor –ε f c, it is possible, or not, to determine a
displacement field such that this tensor is the symmetrical part of the displacement gradient tensor,
is fundamental in the stress approach. It is possible to determine in the general case what are the
requirements for the components of the tensor –ε f c.

To do this, we start from the decomposition, presented in Paragraph 1.3.3, of the solution
displacement gradient tensor as the sum of its symmetrical and antisymmetrical parts:

Dxu =
1
2

(

Dxu+(Dxu)T
)

+
1
2

(

Dxu− (Dxu)T
)

= –ε+r

or, in terms of components in a Cartesian vector basis (i1, i2, i3), with associated coordinates
(x1,x2,x3):

∂uk

∂xl
= εkl + rkl =

1
2

(
∂uk

∂xl
+

∂ul

∂xk

)

+
1
2

(
∂uk

∂xl
− ∂ul

∂xk

)

, 1 ≤ k, l ≤ 3

We will focus on the antisymmetrical part r: indeed, if we establish the conditions necessary for
its existence, in this case we could say that –ε is indeed the symmetrical part of the displacement
gradient tensor. We start by expressing the partial derivatives of this antisymmetric part as a function
of the derivatives of the components of –ε:

2
∂ rkl

∂xm
=

∂ 2uk

∂xl∂xm
− ∂ 2ul

∂xk∂xm

=
∂ 2uk

∂xl∂xm
+

(
∂ 2um

∂xk∂xl
− ∂ 2um

∂xk∂xl

)

− ∂ 2ul

∂xk∂xm

=

(
∂ 2uk

∂xm∂xl
+

∂ 2um

∂xk∂xl

)

−
(

∂ 2um

∂xl∂xk
− ∂ 2ul

∂xm∂xk

)

= 2
∂εkm

∂xl
−2

∂εlm

∂xk
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since the cross second derivatives of the components of u must be equal according to Schwarz’s
theorem. For being able to trace back to the components rkl of r, it is necessary (and sufficient) that
its second derivatives verify Schwarz’s theorem as well:

∂ 2rkl

∂xm∂xn
=

∂ 2rkl

∂xn∂xm
, 1 ≤ k, l,m,n ≤ 3

hence, finally:

∂ 2εkm

∂xl∂xn
− ∂ 2εlm

∂xk∂xn
=

∂ 2εkn

∂xl∂xm
− ∂ 2εln

∂xk∂xm
, 1 ≤ k, l,m,n ≤ 3

which constitute six independent scalar equations, called “compatibility equations”; these equations
guarantee the possibility of finding a displacement field associated with the tensor –ε: indeed, in this
case, now that we have determined r, it is enough to write that:

Dxu = –ε+r

equation which is integrable taking into account Schwarz’s theorem. Besides, the approach we
have just described here has the advantage of being constructive, since it gives all the steps to go
back to the displacement field from the tensor –ε.

R Another way to establish these equations is to use the notion of the curl r♦txA of a tensor, specified in
Appendix B.1.1, and which is the linear application that, to a constant vector c, associates:

(r♦txA)c = rotx

(
ATc

)

where rotxv is the curl of a vector v.
Indeed, by taking the curl of the definition of the infinitesimal strain tensor, we obtain:

2r♦tx –ε = r♦tx(Dxu)+r♦tx

(
(Dxu)T

)
= 0+Dx(rotxu)

hence, by applying the curl a second time:

r♦tx(r♦tx –ε) = 0

Since this tensor is symmetric, six independent scalar relations can be obtained by writing its components
in a vector basis, which are the compatibility equations that we have determined above.
It is interesting to see the parallel between this result, and a similar one, concerning vectors: a given
vector field z can be written as the gradient of a scalar function (to be determined) if and only if its curl
is zero: rotxz = 0.

■ Example 5.5 — Compatibility of a thermal strain field. We would like to study here for which conditions
on the temperature variation field ∆T = Θ(x) the associated strain field ( –εth = αΘ(x)I) is compatible (where the
coefficient of thermal expansion α isassumed uniform); we then use the approach presented above.

By using a Cartesian vector basis (i1, i2, i3), with associated coordinates (x1,x2,x3), one can express the nine
compatibility scalar equations as:

α
∂ 2Θ

∂x2
2

=
∂ 2ε11

∂x2∂x2
− ∂ 2ε21

∂x1∂x2
=

∂ 2ε12

∂x2∂x1
− ∂ 2ε22

∂x1∂x1
=−α

∂ 2Θ

∂x2
1

−α
∂ 2Θ

∂x1∂x3
=

∂ 2ε12

∂x2∂x3
− ∂ 2ε22

∂x1∂x3
=

∂ 2ε13

∂x2∂x2
− ∂ 2ε23

∂x1∂x2
= 0

α
∂ 2Θ

∂x2∂x3
=

∂ 2ε11

∂x2∂x3
− ∂ 2ε21

∂x1∂x3
=

∂ 2ε13

∂x2∂x1
− ∂ 2ε23

∂x1∂x1
= 0

0 =
∂ 2ε23

∂x1∂x2
− ∂ 2ε13

∂x2∂x2
=

∂ 2ε22

∂x1∂x3
− ∂ 2ε12

∂x2∂x3
= α

∂ 2Θ

∂x1∂x3

α
∂ 2Θ

∂x2
3

=
∂ 2ε22

∂x3∂x3
− ∂ 2ε32

∂x2∂x3
=

∂ 2ε23

∂x3∂x2
− ∂ 2ε33

∂x2∂x2
=−α

∂ 2Θ

∂x2
2
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−α
∂ 2Θ

∂x2∂x1
=

∂ 2ε23

∂x3∂x1
− ∂ 2ε33

∂x2∂x1
=

∂ 2ε21

∂x3∂x3
− ∂ 2ε31

∂x2∂x3
= 0

−α
∂ 3Θ

∂x3∂x2
=

∂ 2ε31

∂x1∂x2
− ∂ 2ε11

∂x3∂x2
=

∂ 2ε32

∂x1∂x1
− ∂ 2ε12

∂x3∂x1
= 0

0 =
∂ 2ε32

∂x1∂x3
− ∂ 2ε12

∂x3∂x3
=

∂ 2ε33

∂x1∂x2
− ∂ 2ε13

∂x3∂x2
= α

∂ 2Θ

∂x1∂x2

α
∂ 2Θ

∂x2
1

=
∂ 2ε33

∂x1∂x1
− ∂ 2ε13

∂x3∂x1
=

∂ 2ε31

∂x1∂x3
− ∂ 2ε11

∂x3∂x3
=−α

∂ 2Θ

∂x2
3

six of which are truly independent. From equations (1), (5) and (9) we can deduce that:

∂ 2Θ

∂x2
1

=
∂ 2Θ

∂x2
2

=
∂ 2Θ

∂x2
3

= 0

then, using the other equations:
∂Θ

∂x1
=C1,

∂Θ

∂x2
=C2,

∂Θ

∂x3
=C3

where C1, C2 and C3 are constants. It is then concluded that the temperature variation field must safisfy:

Θ(x) =
〈

C, x
〉
+D

where C is the constant vector of components (C1,C2,C3) and D is a constant.

If this condition is met for the temperature variation field, the displacement field is determined by following the
steps of the procedure:

1. the partial derivatives of the components of r are calculated, and expressed as functions of the derivatives of
the components of –ε:

∂ rkl

∂xm
=

∂εkm

∂xl
− ∂εlm

∂xk
, 1 ≤ k, l,m ≤ 3

2. we integrate the previous relations to determine the components of r;
3. we deduce from the components of r the expressions of the partial derivatives of the displacement field:

∂uk

∂xl
= εkl + rkl , 1 ≤ k, l ≤ 3

4. we integrate the previous relations to determine the displacement field, for which we finally find as compo-
nents in (i1, i2, i3):

u1(x1,x2,x3) =
C1

2
(x2

1 − x2
2 − x2

3)+C2x1x2 +C3x1x3 +Dx1 +a1 −b3x2 +b2x3

u2(x1,x2,x3) =
C2

2
(x2

2 − x2
1 − x2

3)+C1x1x2 +C3x2x3 +Dx2 +a2 −b1x3 +b3x1

u3(x1,x2,x3) =
C3

2
(x2

3 − x2
1 − x2

2)+C2x2x3 +C1x1x3 +Dx3 +a3 −b2x1 +b1x2

where (a1,a2,a3) and (b1,b2,b3) are the components of two constant vectors a and b, which correspond to
an arbitrary rigid body movement, consisting of a translation and a (small) rotation (a+b∧x).

Therefore, if the temperature variation field is linear, it is possible to associate a displacement field (the one
we have just calculated) with it, which means that, if there is no constraint for this displacement, the associated
deformations can occur freely, and no stress is created in the domain, since we have:

1
2

(

Dxu+(Dxu)T
)

= –εt = –εth

On the other hand, if the temperature variation does not have this property, stresses appear together with elastic
deformations so that there may actually be an associated displacement field such that:

1
2

(

Dxu+(Dxu)T
)

= –εt = –εe + –εth

■
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Summary 5.3 — Compatibility equations. The necessary conditions for a tensor –ε(x, t) to be
effectively the symmetrical part of the displacement gradient tensor are written as the following
six scalar equations:

∂ 2εkm

∂xl∂xn
− ∂ 2εlm

∂xk∂xn
=

∂ 2εkn

∂xl∂xm
− ∂ 2εln

∂xk∂xm
, 1 ≤ k, l,m,n ≤ 3

which are expressed in a Cartesian vector basis (i1, i2, i3), with associated coordinates (x1,x2,x3).

R In the case where no hypothesis is made about the sought stress field, the compatibility equations, in
which the constitutive relation expressed in compliance is injected, and which are combined with the
local equilibrium equation, allow for finding relations that must be verified by the stress tensor so that it
can be the true solution; these are the so-called “Beltrami’s equations”, which, in the static framework,
and in the presence of a homogeneous material, are written as:

1
1+ν

Dx

(
∇∇∇x(tr –σ)

)
+∆∆x –σ+

ν

1−ν
(divx fV )I+DxfV +(DxfV )

T = 0

where ∆∆x is the (tensor) Laplacian, which, in a Cartesian vector basis, is the tensor whose components
are equal to the Laplacians of the original tensor components.
Since this equation corresponds to a symmetrical tensor, it can give six independent scalar relations; in
the usual case of uniform volume force densities, we establish that the stress tensor must then verify:

∆∆x∆∆x –σ = 0

In practice, these equations are rarely used.

5.2.3 Approximate solutions

In most of the cases encountered, it is not possible to find fields that verify all the equations of the
problem: there are indeed few analytical solutions, and these are often associated with elementary
load cases and geometries. It is then necessary to find alternatives to obtain approximate solutions.

Saint-Venant’s principle

We have already had the opportunity to see the implications of this principle in Paragraph 3.1.1,
which presented the details of a simple tensile test: whatever the way the specimen is loaded at
both ends, the hypothesis of uniaxial and homogeneous stress can be adopted as long as one is “far
enough” away from these ends, provided that these surface forces give, on each end, a resultant
force of direction the axis e of the specimen, and a zero moment at a point on the axis of symmetry
of the specimen. In practice, we can see, using the numerical simulations presented in Figure 3.3
(on page 69) for example, that the entire gauge section of the specimen actually presents such a
stress: –σ = σeee⊗ e.

Figure 5.2: Illustration of Saint-Venant’s principle.
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Saint-Venant’s principle. This principle can be qualitatively stated as follows.
If we replace, on a boundary of “small” area, the surface force conditions by locally different

conditions, but which have identical resultant force and moment, the two solutions in terms of
stresses differ little, “far away” from this boundary.

Everything happens as if the material domain under study only reacts to the global loading
corresponding to the resultant force and to the moment of the action on the surface, as represented
schematically in Figure 5.2 where we have defined:

R =
∫

Σ
fS dSx, and MxO =

∫

Σ
(x−xO)∧ fS dSx

This result is useful when seeking approximate solutions to the problem being addressed since it
exempts from locally verifying all the boundary conditions: thus, we have a practical means to
“simplify” specific data of the problem, and to find valid analytical solutions over an extensive
area of the domain.

R We have deliberately limited ourselves to a qualitative statement of Saint-Venant’s principle. It is, of
course, possible to have a more precise mathematical version, which describes the two solutions as
asymptotically equivalent, and therefore specifies the meaning of the words “small” and “far” in the
previous statement. The figure below shows the size of the zone of influence in the case of a compression
test, where two specimens are compared by photoelasticity.

The uniform compression zone in the right-hand specimen is easily distinguished, while the left-hand
specimen is too short for Saint-Venant’s principle to be applied.

■ Example 5.6 — Torsion of a cylindrical shaft of arbitrary cross-section: Saint-Venant’s principle.
This case actually corresponds to the historical origin of the principle, which was stated by Saint-Venant following
his Mémoire sur la torsion des prismes, dans le Résumé des leçons données à l’École des ponts et chaussées sur
l’application de la mécanique à l’établissement des constructions et des machines (1864):

Mais cette double et longue attente n’est pas nécessaire avant de résoudre les questions de
pratique, qui n’exigent que des approximations. Nous l’avons souvent dit : des faits suffisam-
ment nombreux montrent le peu d’influence du mode de répartition et d’application, et permettent
d’employer les formules soit anciennes soit nouvelles d’extension, torsion, flexion, pour des forces
quelconques agissant aux extrémités de prismes très-longs par rapport à leurs dimensions transver-
sales en n’ayant égard qu’aux grandeurs de leurs résultantes et de leurs moments résultants. D’où
il suit qu’il suffit de donner des démonstrations exactes des formules relativement à un cas ou à un
mode particulier d’action des forces aux extrémités, pour que la théorie soit établie et qu’on puisse
faire l’application de ses résultats aux divers autres cas qui peuvent s’offrir.

These observations allow us to justify why, in Example 5.1, the “pragmatic” choice was made to impose, as boundary
conditions on the shaft ends, only the resultant forces and moments exerted by the test machine. Indeed, except in the
vicinity of the ends, how the machine applies the torsion couple does not influence the solution fields of the torsion
problem, provided that the resultant force and the other two components of the moment, associated with the grip
forces, are effectively zero.
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Thus, if we use the displacement approach proposed in Example 5.3, the solution obtained is valid as soon as
we look away from the ends of the shaft, because:

RO = 0 = RH

and:
〈

MO , i1
〉
= 0 =

〈
MO , i2

〉
, et

〈
MH , i1

〉
= 0 =

〈
MH , i2

〉

The torsion couple is then expressed as:

〈
MH , e

〉
=
∫

ΣH

〈
xΣ ∧ ( –σe), e

〉
dSx =

∫

ΣH

αµ
〈
∇∇∇xΣ ϕ + e∧xΣ , e∧xΣ

〉
dSx

=
∫

ΣH

αµ ∥e∧xΣ∥2 dSx +
∫

ΣH

αµ
〈
∇∇∇xΣ ϕ , e∧xΣ

〉
dSx

= αµ

∫

ΣH

∥xΣ∥2 dSx +αµ

〈

e,
∫

ΣH

xΣ ∧∇∇∇xΣ ϕ dSx

〉

= αµIe +αµ

〈

e,
∫

ΣH

xΣ ∧∇∇∇xΣ ϕ dSx

〉

where Ie =
∫

ΣH

∥xΣ∥2 dSx is the “polar moment of inertia”, which will be discussed in beam mechanics in Para-

graph 6.3.3.
It is then possible to show that, whatever the geometry of the cross-section, the second integral is always

negative, which leads to the conclusion that:
〈

MH , e
〉

α
= µJ < µIe

i.e. the warping phenomenon reduces the torsional stiffness of the shaft. ■

Towards numerical solutions. . .

Another possibility to obtain approximate solutions is to search for them on small (functional) bases;
indeed, let us imagine that, in the case of a one-dimensional problem, we use as an approximate
form for the displacement its representation in the basis of the monomials of the space variable, up
to a certain rank N:

uh(x) =
∞

∑
k=1

Ukxk ≈
N

∑
k=1

Ukxk

The problem has thus been discretized spatially, making it possible to consider a numerical solution:
the method classically used in mechanics (as in any discipline searching for the solutions of partial
differential equations) is the finite element method, whose framework is beyond this course, but
some elements of which are given in the following example.

■ Example 5.7 — Illustration of the finite element method. To illustrate the main principles of the method,
we take the example of a gravity dam subjected to the hydrostatic pressure of water, whose equations are summarized
in Figure 5.1. The simplified geometry of this dam consists, with a hypothesis of a planar problem, of an isosceles
right triangle with a side L.

The basis of the finite element method consists in discretizing the geometry: a certain number of points, or
“nodes”, are introduced which allow us to realize a partition of the geometry into various triangles, which we call
“elements” (it would also be possible to have quadrilaterals). On each element, a polynomial interpolation of the
displacement field is proposed, which is thus sought for in an approximate form.

In order to simplify the presentation, let us imagine that the geometry of the dam is discretized using only three
nodes, which are the vertices of the triangle; there is therefore only one associated element: the dam itself. We then
choose to interpolate the approximate displacement linearly on this triangle, by choosing a Cartesian coordinate
system (x1,x2) whose origin is taken at the vertex at the bottom left of the dam, and by writing that:

uh(x1,x2) =
3

∑
k=1

Nk(x1,x2)Uk
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where the functions Nk are called “shape functions”, in this case linear:

N1(x1,x2) =
x2

L
, N2(x1,x2) = 1− x1

L
− x2

L
, N3(x1,x2) =

x1

L

and the vectors Uk contain the components of the displacements of nodes 1, 2 and 3, mentioned below. We then note
U the vector of dimension 6×1 containing all these components.

With this interpolation, it is possible to express the infinitesimal strain and stress tensors in matrix form, using
the Voigt notation introduced in Paragraph 4.1.3:

˜ –ε = BU, and ˜ –σ = CBU

which allows for estimating the elastic strain energy as:

E =
1
2

∫

Ω

〈
˜ –σ, ˜ –ε
〉

dVx =
1
2

∫

Ω
UTBTCBUdVx

Similarly, we can estimate the work of the force densities as:

W =
∫

Ω

〈
fV ,uh

〉
dVx +

∫

Σ

〈
fS ,uh

〉
dSx =

∫

Ω
UTFV dVx +

∫

Σ
UTFS dSx

where Σ is the area subjected to water pressure. Considering the boundary conditions in displacement, nodes 2 and
3 are fixed, and it is then possible to show that the finite element solution consists in solving the following matrix
system:

(∫

Ω
BTCBdVx

)(〈
u1 , i1

〉

〈
u1 , i2

〉

)

=
∫

Ω
FV dVx +

∫

Σ
FS dSx

where the different matrices are reduced to the indices corresponding to the two components of the displacement
of node 1, resulting in the solution below (the arrows represent the displacement, while the colors refer to the first
principal stress).

It is easy to see that the displacement evolves linearly in the element, while the stress is constant.
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A fundamental property of the finite element method is that it converges towards the exact solution of the
problem when the number of elements approaches infinity; for this purpose, it is then necessary to “assemble” the
matrices presented above in order to consider a larger matrix system. This convergence phenomenon can be observed
in the figures below.

It is also possible to increase the order of the proposed interpolation for the displacement, as illustrated by the
last figure with 16 384 elements, and where the interpolation is quadratic. ■

5.3 Simplification of an elasticity problem

In some cases, it is possible to simplify the equations and/or boundary conditions established in
Paragraphs 5.1.1 and 5.1.2, in order to study a simpler problem, but still close (or even equivalent)
to the initial problem. These simplifications can be done in different ways.

5.3.1 Principle of superposition

A first possibility consists in breaking down the initial problem into several simpler problems:
indeed, given the linearity of all the equations that we have detailed in Paragraphs 5.1.1 and 5.1.2,
it is possible to determine the solution as a linear combination of the elementary problem solutions.

If we consider, as an illustration, the case (shown in Figure 5.3) of a building subjected to the
combined action of wind and snow on its roof, it is possible to break down the problem as follows:

1. a problem where the building is only subjected to the action of the wind, and for which we
determine as a solution a displacement field uv, and a stress tensor –σv;

2. a problem where the building is only subjected to the action of snow, and for which we
determine as a solution a displacement field un, and a stress tensor –σn.

The solution of the initial problem is then written as the sum of the solutions of the two elementary
problems:

u = uv +un, and –σ = –σv + –σn

It is also possible to consider other scenarios once the basic solutions are known: for example, if
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Figure 5.3: Illustration of the principle of superposition.

we now look at the building subjected to twice as much snow and half as much wind, the associated
solution is simply written as:

u =
uv

2
+2un, and –σ =

–σv

2
+2 –σn

The principle of superposition thus concerns any linear combination of simple problems, as
summarized in Figure 5.3.

The interest of this principle of superposition concerns above all analytical solutions, since the
knowledge of solutions to elementary problems, possibly listed, allows us to solve problems with
complex loads and boundary conditions. Thanks to this principle, we can also verify whether the
action of gravity can be neglected, or not, since we can directly compare the solution associated
with it with the one that does not take it into account.

R Thermoelasticity problems can also benefit from this principle: it is indeed possible to treat the
mechanical loading separately from the thermal loading, considering, for example, with regard to the
local equilibrium equation into which the constitutive relation has been injected, on the one hand:

divdivdivx(CCC –εm)+ fV = ρ0
..

um, with –εm =
1
2

(
Dxum +(Dxum)T

)

and on the other hand:

divdivdivx

(
CCC( –εe −α∆T I)

)
= ρ0

..

uth, with –εe =
1
2

(
Dxuth +(Dxuth)T

)

The solution to the thermoelastic problem is therefore written simply as: u = um +uth.
Thus, the displacement field obtained during the hindered thermal expansion of a bar, studied in the
second part of Example 4.2, can be obtained as the sum of the displacement corresponding to the free
expansion of this bar, developed in the first part of the same example:

uth(x) = (α∆T )
(
rir(θ)+ ziz

)

and of the displacement obtained for the compression of a bar subjected to a pressure p0, studied in
Example 4.1:

um(x) =
p0

E

(
νrir(θ)− ziz

)
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Besides, this pressure p0 is determined expressing the impossibility for the bar to lengthen:

〈
um(z = H)+uth(z = H), iz

〉
= 0

which implies that p0 = E(α∆T ), and then that the sought displacement field is finally:

u(x) = (1+ν)(α∆T )rir(θ)

5.3.2 Plane elasticity

In some specific cases that we will describe here, it is possible to reduce the initially three-
dimensional problem to a study in a particular plane, thus reducing the number of unknown
components and variables to take into account.

Plane strain

This hypothesis is commonly applied when studying a domain whose geometry is invariant in a
specific direction (according to which it is, moreover, of large dimension), and which is only loaded
in the plane perpendicular to this direction (plane which will then be called a cross-section). This
hypothesis is all the more valid if the out-of-plane displacement is constrained to be zero on the two
end cross-sections (as in the case of a domain between two fixed, rigid bodies); otherwise, adopting
this hypothesis is like considering that the out-of-plane displacement can still be ignored and that
the study can limit itself to an arbitrarily chosen cross-section of the domain.

Plane strain hypothesis. This hypothesis implies that, with respect to a plane (Π), with
associated Cartesian vector basis (i1, i2), we assume that the displacement field is in the plane
(Π), and depends only on the two coordinates (x1,x2) associated with the basis:

u(x1,x2) = u1(x1,x2)i1 +u2(x1,x2)i2

It is therefore independent of the x3-coordinate associated with i3 = i1 ∧ i2.
Therefore, the infinitesimal strain tensor is also independent of x3, and, given the form

of the displacement field, verifies –εi3 = 0, as can be seen by using its expression in the basis
(i1, i2, i1 ∧ i2):

–ε(x1,x2) =









∂u1

∂x1
(x1,x2)

1
2

(
∂u1

∂x2
(x1,x2)+

∂u2

∂x1
(x1,x2)

)

0

1
2

(
∂u1

∂x2
(x1,x2)+

∂u2

∂x1
(x1,x2)

)
∂u2

∂x2
(x1,x2) 0

0 0 0









(i1,i2,i1∧i2)

The associated stress tensor is then obtained by applying the constitutive relation in stiffness:

–σ = λ (tr –ε)I+2µ –ε

where the Lamé parameters λ and µ can depend on x1 and x2, and are expressed as functions of the
Young’s modulus and Poisson’s ratio just as in the three-dimensional case:

λ =
νE

(1+ν)(1−2ν)
, and µ =

E
2(1+ν)
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In the vector basis (i1, i2, i1 ∧ i2), the stress tensor is therefore written as:

–σ =











(λ +2µ)
∂u1

∂x1
+λ

∂u2

∂x2
µ

(
∂u1

∂x2
+

∂u2

∂x1

)

0

µ

(
∂u1

∂x2
+

∂u2

∂x1

)

λ
∂u1

∂x1
+(λ +2µ)

∂u2

∂x2
0

0 0 λ

(
∂u1

∂x1
+

∂u2

∂x2

)











(i1,i2,i1∧i2)

The local equilibrium equation then becomes a two-component vector equation, since we
remain in the plane (Π); in Cartesian coordinates, we must then verify that:

∂σ11

∂x1
+

∂σ12

∂x2
+
〈

fV , i1
〉
= ρ0

..

u1

∂σ12

∂x1
+

∂σ22

∂x2
+
〈

fV , i2
〉
= ρ0

..

u2

! As expected, the stress tensor depends only on (x1,x2); on the other hand, it is not “plane”,
since there is a priori a non-zero non-planar component:

σ33(x1,x2) = λ
(
ε11(x1,x2)+ ε22(x1,x2)

)
= λ

(
∂u1

∂x1
(x1,x2)+

∂u2

∂x2
(x1,x2)

)

̸= 0

R Even if the plane strain hypothesis is, by nature, kinematic, it is possible to adopt a stress approach to
solve the problem. In this case, the stress tensor must satisfy several a priori conditions.
First, as above, he must satisfy i3 ∧ –σi3 = 0. In addition, σ33 cannot be arbitrary, since it has been
established that, necessarily:

σ33 = λ (ε11 + ε22) =
λ

2(λ +µ)
(σ11 +σ22) = ν(σ11 +σ22)

Finally, to be able to be the solution, it must satisfy Beltrami’s equations, mentioned in Paragraph 5.2.2,
and which, in the static framework, and for a homogeneous material, are simply reduced here to the
following scalar relation:

(1−ν)∆x(σ11 +σ22)+divx fV = 0

Besides, the constitutive relation in compliance is written, in terms of components, as:

ε11 =
1−ν2

E

(

σ11 −
ν

1−ν
σ22

)

ε22 =
1−ν2

E

(

σ22 −
ν

1−ν
σ11

)

ε12 =
1+ν

E
σ12

Plane stress

This assumption is commonly adopted when studying a domain whose geometry is invariant in
a specific direction in which it is thin, and if it is only loaded in the plane perpendicular to that
direction. It is all the more valid if the two end cross-sections are free of forces; otherwise, adopting
this hypothesis means that the cross-section is thin enough to neglect the stress vector across that
plane and that the study can be limited to an arbitrarily chosen cross-section of the domain.
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Plane stress hypothesis. This hypothesis implies that, with respect to a plane (Π), with
associated Cartesian vector basis (i1, i2), we assume that the stress tensor is “plane” (it satisfies

–σi3 = 0) and only depends on the two coordinates (x1,x2) associated with the basis:

–σ(x1,x2) = σ11(x1,x2)i1 ⊗ i1 +σ22(x1,x2)i2 ⊗ i2 +2σ12(x1,x2)i1 ⊗S i2

It is therefore independent of the x3-coordinate associated with i3 = i1 ∧ i2.

The local equilibrium equation then becomes a two-component vector equation, since we
remain in the plane (Π); in Cartesian coordinates, and in the static framewoek, we must verify:

∂σ11

∂x1
+

∂σ12

∂x2
+
〈

fV , i1
〉
= 0

∂σ12

∂x1
+

∂σ22

∂x2
+
〈

fV , i2
〉
= 0

The associated infinitesimal strain tensor is then obtained by applying the constitutive relation
in compliance:

–ε =
1+ν

E

–σ− ν

E
(tr –σ)I

hence, in the vector basis (i1, i2, i1 ∧ i2):

–ε =









σ11

E
− ν

E
σ22

1+ν

E
σ12 0

1+ν

E
σ12

σ22

E
− ν

E
σ11 0

0 0 −ν

E

(
σ11 +σ22)









(i1,i2,i1∧i2)

! As expected, the infinitesimal strain tensor depends only on (x1,x2); on the other hand, it is
not “plane”, since there is a priori a non-zero non-planar component:

ε33(x1,x2) =− ν

E

(
σ11(x1,x2)+σ22(x1,x2)

)
=− ν

1−ν

(
ε11(x1,x2)+ ε22(x1,x2)

)
̸= 0

The compliance constitutive relation can naturally be inverted, to imply that, in terms of
components:

σ11 =
E

1−ν2 (ε11 +νε22)

σ22 =
E

1−ν2 (ε22 +νε11)

σ12 =
E

1+ν
ε12

or, directly, for the plane parts ˜ –σ and ˜ –ε of the stress and strain tensors:

˜ –σ =
νE

1−ν2 (tr ˜ –ε)I+
E

1+ν
˜ –ε

! The previous form is very close to the three-dimensional Hooke’s law, except that the
parameter λ must be replaced by:

λCP =
νE

1−ν2 ̸= νE
(1+ν)(1−2ν)

= λ
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Given the form of the infinitesimal strain tensor, the compatibility equations, discussed in
Paragraph 5.2.2, necessarily imply that:

ε33(x1,x2) = c1x1 + c2x2 + c3

where c1, c2 and c3 are constants. In addition, Beltrami’s equations, giving the necessary conditions
for –σ to be the solution, imply that we must have, in the static framework:

∆x(σ11 +σ22)+(1+ν)divx fV = 0

R In the case where the volume force density is uniform over the domain, the equations can be solved by
introducing what is called an “Airy stress function” Φ, such that, in Cartesian coordinates:

σ11 =
∂ 2Φ

∂x2
2

−
〈

fV , i1
〉
x1

σ22 =
∂ 2Φ

∂x2
1

−
〈

fV , i2
〉
x2

σ12 =− ∂ 2Φ

∂x1∂x2

Indeed, with this choice, the local equilibrium equation is automatically verified. In addition, Beltrami’s
equations imply that, necessarily:

0 = ∆x(σ11 +σ22) = ∆x∆xΦ

Axisymmetry

In the case of geometries of revolution, it is possible to consider some simplifications; if we use
the cylindrical coordinates (r,θ ,z) and the vector basis (ir(θ), iθ (θ), iz) associated with the studied
geometry, two situations can occur:

• if the loading and the displacement boundary conditions are axisymmetric, i.e. independent
of the angle θ , and, in addition, without orthoradial component, the components of the
displacement vector and of the stress tensor do not depend on θ , and the solution can be
written as:

u(x) = ur(r,z)ir(θ)+uz(r,z)iz

–σ(x) = σrr(r,z)ir(θ)⊗ ir(θ)+σθθ (r,z)iθ ⊗ iθ (θ)+σzz(r,z)iz ⊗ iz +2σrz(r,z)ir(θ)⊗S iz

which means that the problem can be solved in a plane passing through the cylinder axis,
with coordinates (r,z);

! We will be careful that, even without explicit dependence in θ , an orthoradial component
remains a priori in the infinitesimal strain tensor, expressed as:

εθθ (r,z) =
ur(r,z)

r

and, consequently, in the stress tensor:

σθθ (r,z) = (λ +2µ)
ur(r,z)

r
+λ

(
∂ur

∂ r
(r,z)+

∂uz

∂ z
(r,z)

)

• if the loading and the displacement boundary conditions are independent of z, and perpen-
dicular to the axis of axisymmetry, in this case, a plane strain hypothesis, or a plane stress
hypothesis, can be adopted in the plane of coordinates (r,θ).
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R In the case of a spherically symmetrical domain, if the loading and displacement boundary condi-
tions are radial, and independent of the angles ϑ and φ associated with the spherical vector basis(
er(ϑ ,φ),eϑ (ϑ ,φ),eφ (φ)

)
, we can then search for a displacement vector and a stress tensor indepen-

dent of ϑ and φ :

u(x) = ur(r)er(ϑ ,φ)
–σ(x) = σrr(r)er(ϑ ,φ)⊗ er(ϑ ,φ)+σϑϑ (r)eϑ (ϑ ,φ)⊗ eϑ (ϑ ,φ)+σφφ (r)eφ (φ)⊗ eφ (φ)

which means that the problem is solved along a radius of the geometry. Moreover, we should note
that, even without explicit dependence in ϑ and φ , there remain a priori non-radial components in the
infinitesimal strain tensor:

εϑϑ (r) =
ur(r)

r
= εφφ (r)

Summary 5.4 — Plane elasticity. Three frameworks allow us to replace the initial three-
dimensional problem by a two-dimensional problem only.

1. plane strain hypothesis in a plane of coordinates (x1,x2) associated with a Cartesian vector
basis (i1, i2):

u(x1,x2, t) = u1(x1,x2, t)i1 +u2(x1,x2, t)i2

–ε(x1,x2, t)(i1 ∧ i2) = 0

–σ(x1,x2, t) = λ
(

tr –ε(x1,x2, t)
)
I+2µ –ε(x1,x2, t)

σ33(x1,x2, t) = λ
(
ε11(x1,x2, t)+ε22(x1,x2, t)

)
= λ

(
∂u1

∂x1
(x1,x2, t)+

∂u2

∂x2
(x1,x2, t)

)

̸= 0

2. plane stress hypothesis in a plane of coordinates (x1,x2) associated with a Cartesian vector
basis (i1, i2):

–σ(x1,x2, t)(i1 ∧ i2) = 0

–ε(x1,x2, t) =
1+ν

E

–σ(x1,x2, t)−
ν

E

(
tr –σ(x1,x2, t)

)
I

ε33(x1,x2, t)=−ν

E

(
σ11(x1,x2, t)+σ22(x1,x2, t)

)
=− ν

1−ν

(
ε11(x1,x2, t)+ε22(x1,x2, t)

)
̸= 0

3. axisymmetry hypothesis around the axis iz: no component depends on the angle θ

associated with the cylindrical vector basis (ir(θ), iθ (θ), iz).

5.3.3 Taking into account symmetry planes

Another possibility of simplifying the problem concerns the case of geometries that present
a symmetry plane; indeed, if the loadings and the displacement boundary conditions are also
symmetrical with respect to this plane, it is possible to study only one half of the problem, provided
that the symmetry plane is associated with particular conditions that we will specify in this section.
While, from an analytical point of view, this may make it easier to solve the problem, it is mainly in
the context of a numerical simulation that symmetry is of interest, since it reduces the numerical
cost associated with the calculation.

The symmetry plane is associated with a Cartesian vector basis (i1, i2, i3) so that i3 is normal to
the plane; this latter is therefore of equation x3 = 0. For two symmetrical points, with coordinates
(x1,x2,x3) and (x1,x2,−x3) respectively, the displacements must also be symmetrical with respect
to the plane x3 = 0, so that their components (u1,u2,u3) in (i1, i2, i3) verify:

u1(x1,x2,−x3)= u1(x1,x2,x3), u2(x1,x2,−x3)= u2(x1,x2,x3), and u3(x1,x2,−x3)=−u3(x1,x2,x3)

as shown in Figure 5.4. When x3 approaches zero, we obtain, by continuity, that the displacements
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Figure 5.4: Taking into account a symmetry plane

of the points of the symmetry plane should verify:

u3(x1,x2,0) = 0, ∀x1,x2

which is physically interpreted by the fact that a point of the plane of symmetry must remain in this
plane because, otherwise, at this point, we would have either interpenetration or creation of a void.

Moreover, since nothing can be said about the two other components of the displacement
field on the symmetry plane, it is necessary, for the problem to be properly addressed, to express
also conditions on the surface forces. We begin by analyzing the derivatives of the displacement
components, for two symmetrical points, of coordinates (x1,x2,x3) and (x1,x2,−x3) respectively:

∂u3

∂x1
(x1,x2,−x3) =−∂u3

∂x1
(x1,x2,x3), and − ∂u1

∂x3
(x1,x2,−x3) =

∂u1

∂x3
(x1,x2,x3)

∂u3

∂x2
(x1,x2,−x3) =−∂u3

∂x2
(x1,x2,x3), and − ∂u2

∂x3
(x1,x2,−x3) =

∂u2

∂x3
(x1,x2,x3)

which results in the associated shear strains:

2ε13(x1,x2,−x3) =
∂u3

∂x1
(x1,x2,−x3)+

∂u1

∂x3
(x1,x2,−x3)

=−∂u3

∂x1
(x1,x2,x3)−

∂u1

∂x3
(x1,x2,x3) =−2ε13(x1,x2,x3)

2ε23(x1,x2,−x3) =
∂u3

∂x2
(x1,x2,−x3)+

∂u2

∂x3
(x1,x2,−x3)

=−∂u3

∂x2
(x1,x2,x3)−

∂u2

∂x3
(x1,x2,x3) =−2ε23(x1,x2,x3)

and, consequently, the shears:

σ13(x1,x2,−x3) = 2µε13(x1,x2,−x3) =−2µε13(x1,x2,x3) =−σ13(x1,x2,−x3)

σ23(x1,x2,−x3) = 2µε23(x1,x2,−x3) =−2µε23(x1,x2,x3) =−σ23(x1,x2,−x3)

These last results allow us to deduce, by continuity when x3 approaches zero, that there is no shear
on the plane of symmetry:

σ13(x1,x2,0) = 0 = σ23(x1,x2,0), ∀x1,x2

These conditions are actually equivalent to those, presented in Paragraph 5.1.2, concerning a
frictionless contact condition on a fixed plane.

Once the problem is solved on the half-domain, with the addition of these frictionless contact
conditions on the symmetry plane, it is sufficient to extend, by symmetry, the solution over the
whole domain.
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Summary 5.5 — Taking into account symmetry planes. In the case of a problem with a
symmetry plane Σs of normal vector i3, it is sufficient to only treat the problem corresponding to
one of the two halves of the material domain, by introducing, on the symmetry plane, frictionless
contact conditions along the plane:

〈
u(x, t), i3

〉
= 0, ∀x ∈ Σs, ∀t

–σ(x, t)i3 −
〈

–σ(x, t)i3 , i3
〉
i3 = 0, ∀x ∈ Σs, ∀t

R It is in fact possible to solve in a similar way a problem whose imposed surface forces and/or constrained
displacements are not symmetrical with respect to the plane of symmetry of the geometry. Indeed, by
using the principle of superposition, presented in Paragraph 5.3.1, we can decompose the sought
solution as the sum of the solution of a symmetrical problem and the solution of an antisymmetrical
problem.
If we assume e.g. that the volume force densities fV do not respect this symmetry, we can study the
following two problems, to be solved over a half domain:

1. a symmetrical problem, for which we consider as loading:

fs
V (x1,x2,x3) =

1
2

(
fV (x1,x2,x3)+ fV (x1,x2,−x3)

)
, ∀x1,x2,x3

and conditions of symmetry on the plane x3 = 0:

us
3(x1,x2,0) = 0, and σ s

13(x1,x2,0) = 0 = σ s
23(x1,x2,0), ∀x1,x2

2. an antisymmetrical problem, for which we consider as loading:

fa
V (x1,x2,x3) =

1
2

(
fV (x1,x2,x3)− fV (x1,x2,−x3)

)
, ∀x1,x2,x3

and antisymmetry conditions on the plane x3 =0, for which it is easy to show that they are written
as:

ua
1(x1,x2,0) = 0 = ua

2(x1,x2,0), and σa
33(x1,x2,0) = 0, ∀x1,x2

The solution is therefore obtained as u = us +ua and –σ = –σs + –σa. Even if two calculations have to be
made on half a geometry, this may be more interesting, in terms of computational cost when using a
numerical simulation (typically finite elements), than solving the initial problem on the whole problem.

5.4 Summary of important formulas

Generic formulation of an elasticity problem – Summary 5.1 page 121

–ε =
1
2

(

Dxu+(Dxu)T
)

in Ω

u = ud on ∂uΩ

ρ0
..

u = divdivdivx –σ+ fV in Ω

–σn = fS on ∂σ Ω

–σ =CCC –ε = λ (tr –ε)I+2µ –ε in Ω

–ε =CCC
−1 –σ =

1+ν

E

–σ− ν

E
(tr –σ)I in Ω

u = u0 and
.

u = v0 at t = 0

Displacement formulation of an elasticity problem – Summary 5.2 page 129

(λ +µ)∇∇∇x(divx u)+µ∆∆∆xu+ fV = ρ0
..

u in Ω

u = ud on ∂uΩ
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λ (tr –ε)n+2µ –εn = fS on ∂σ Ω

u = u0 and
.

u = v0 at t = 0

Compatibility equations – Summary 5.3 page 135

∂ 2εkm

∂xl∂xn
− ∂ 2εlm

∂xk∂xn
=

∂ 2εkn

∂xl∂xm
− ∂ 2εln

∂xk∂xm

Plane strain – Summary 5.4 page 145

u(x1,x2) = u1(x1,x2)i1 +u2(x1,x2)i2

–ε(x1,x2)(i1 ∧ i2) = 0

–σ(x1,x2) = λ
(

tr –ε(x1,x2)
)
I+2µ –ε(x1,x2)

σ33(x1,x2) = λ
(
ε11(x1,x2)+ ε22(x1,x2)

)
= λ

(
∂u1

∂x1
(x1,x2)+

∂u2

∂x2
(x1,x2)

)

̸= 0

Plane stress – Summary 5.4 page 145

–σ(x1,x2)(i1 ∧ i2) = 0

–ε(x1,x2) =
1+ν

E

–σ(x1,x2)−
ν

E

(
tr –σ(x1,x2)

)
I

ε33(x1,x2) =−ν

E

(
σ11(x1,x2)+σ22(x1,x2)

)
=− ν

1−ν

(
ε11(x1,x2)+ ε22(x1,x2)

)
̸= 0

Taking into account symmetry planes (plane Σs of normal vector i3) – Summary 5.5
page 147

〈
u, i3

〉
= 0 on Σs

–σi3 −
〈

–σi3 , i3
〉
i3 = 0 on Σs
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Beam models are simplifications of models derived from continuum mechanics, in the
case of so-called “slender” structures; hypotheses on kinematics and stress state allow
for considering these structures as intermediate cases between deformable solids and
perfectly rigid bodies, and thus for obtaining equations whose easier solution makes
these calculations popular in preliminary design studies.

WHY STUDY BEAMS?

6.1 Kinematics of a beam

The first ingredient of a beam model consists in making kinematic assumptions in order to define
an approximate displacement field, simpler than the one we would seek in the framework of
three-dimensional continuum mechanics, in the case of a deformable solid of arbitrary shape.

6.1.1 Geometry and parameterization

A beam is a deformable solid for which one of the characteristic dimensions is very large when
compared to the other two: this dimension is then associated with what is called the “neutral axis”
of the beam, which is not necessarily straight. The other two dimensions are associated with what
is called “cross-section”, which, by definition, is flat and perpendicular to the tangent vector e to the
neutral axis of the beam when considering this latter in its initial configuration (i.e. not deformed).
Thus, a beam can be seen as a (deformable) line around which the different cross-sections are
positioned. Generally, in order to facilitate the description of the kinematics of the beam, one
specific point for each cross-section is chosen: the geometric centre, noted G, of this latter.

In terms of parameterization, one associates to a point G of the neutral axis in the reference
configuration an arc length s, which then allows for specifying a given cross-section Σ. In addition,
a point in this cross-section Σ(s) is positioned relative to the centre G by its coordinates (χ1,χ2)
in a given orthonormal Cartesian vector basis

(
eχ1(s),eχ2(s)

)
of the plane associated with the

cross-section Σ. Thus, a point M of the beam is located in the initial configuration by the position
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vector p, which can be decomposed as follows:

p(s,χ1,χ2) = pG(s)+pΣ(s,χ1,χ2) =
∫ s

0
e(ξ )dξ +χ1eχ1(s)+χ2eχ2(s)

where pG is the position vector of the centre G of the cross-section, and pΣ refers to the position
vector of point M in the cross-section (relative to the centre G).

In this course, we will limit ourselves to the particular case of a straight neutral axis, which
then defines what we call a “straight beam” (in its initial configuration): thus, the tangent vector e

is independent of the arc length s, and is called “axis” of the straight beam. In this case, as shown
in Figure 6.1, a point M of the beam is positioned in the initial configuration as:

p(s,χ1,χ2) = pG(s)+pΣ(χ1,χ2) = se+χ1eχ1 +χ2eχ2

the two vectors (eχ1 ,eχ2) being in this case independent of s, since the cross-section is perpendicular
to e in the initial configuration. We will come back in Paragraph 6.3.3 on the relevant choice of these
two basis vectors; for the moment, we will simply specify that the basis (e,eχ1 ,eχ2) is orthonormal
and right-handed.

Figure 6.1: Parameterization associated with a straight beam.

6.1.2 Perfectly rigid cross-section hypothesis

As we have just seen, the geometry of a beam suggests that we can consider separately the cross-
sections Σ(s) from the axis e of the beam, which connects all the geometric centres G(s) of these
cross-sections. Figure 6.2 shows a first result from a three-point bending test of a straight beam:
this test consists of setting a straight beam on two fixed supports, spaced at a distance L, which is
subjected, at the median plane between the two supports, to a downward vertical force exerted by a
movable cylindrical roller. The image on the right then shows, in superimposition, the deformed
beam (the deformation is strongly amplified). The initially flat cross-sections (which are then of
horizontal normal vector) remain flat after deformation of the beam, as can be seen on the deformed
grid where the points belonging to the same cross-section remain approximately aligned along a
segment, whose length does not change (it remains equal to H).

Displacement expression

Given this experimental result, a first kinematic hypothesis is to assume that the cross-sections
do not deform. In this case, the placement vectors of all the points of a given cross-section Σ of
coordinate s satisfy the placement formula of the points of a perfectly rigid body, as explained in
Example 1.3 on page 5, i.e.:

x(t) = xG(t)+R(t)(p−pG) = xG(t)+xΣ(t), ∀p ∈ Σ, ∀t
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Figure 6.2: Straight beam subjected to a three-point bending test (left) and deformed beam:
amplified deformation estimated by digital image correlation (right).

where R is the rotation tensor of the cross-section Σ of coordinate s, assumed to be of axis a and
angle θ .

As in the more general case of weakly deformable solids in continuum mechanics, we will
adopt here the infinitesimal deformation hypothesis, which is equivalent to assume that the rotation
of each cross-section is “small”, which implies, as detailed in Appendix A.2.6, that:

R≈ I+θ❛∧

up to order one in θ , where ❛∧ is an antisymmetrical tensor such that ❛∧c = a∧ c, ∀c. Moreover,
rather than expressing the placement vectors of the points of the beam, we prefer, as in 3D
continuum mechanics, to be interested in the displacement field u = x−p, which is assumed to be
“small” under the infinitesimal deformation hypothesis:

u = uG +θa∧ (p−pG)

where uG = xG−pG refers to the displacement of the centre G of the cross-section Σ of coordinate s.
By noting θθθ = θa the vector associated with the small cross-section rotation, and using pΣ = p−pG,
the displacement field is rewritten, for any point in the cross-section Σ under study, as:

u = uG +θθθ∧pΣ

Finally, given the small displacement hypothesis, we can consider the initial and deformed configu-
rations as one, and thus express the displacement field at time t using the variables s and (χ1,χ2),
which are assumed to refer indifferently to the two configurations, respectively as the arc length
associated with the centres of the cross-sections Σ on the one hand, and the local coordinates of a
point in a cross-section of coordinate s on the other hand:

u(s,χ1,χ2, t) = uG(s, t)+θθθ(s, t)∧xΣ(χ1,χ2), ∀t

for any point M of the beam, of coordinates (s,χ1,χ2). In other words, the deformation of a
beam can be interpreted as the deformation of the neutral axis along which the perfectly rigid
cross-sections are placed; Figure 6.3 illustrates this idea and shows how the beam, composed of
small elemental volumes (initially cubic in the reference configuration), is deformed: we can see in
particular that the (transverse) geometry of the cross-sections remains unchanged.
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Figure 6.3: Example of beam deformation in the context of the infinitesimal deformation hypothesis:
the elemental parallelepipeds, initially cubic, allow for visualizing the local deformations (here, the
deformations are strongly amplified in order to gain in visibility).

Beam kinematics. The motion of each cross-section can be characterized by six scalar func-
tions of the arc length s:

• three functions associated with the translation of the centre G of the cross-section Σ(s),
which are the three components in a given vector basis of the displacement uG: while
the projection uGe =

〈
uG , e

〉
on the beam axis is called “longitudinal” displacement, and

reflects the elongation (or shortening) of the beam, the other two projections on eχ1 and
eχ2 constitute the “transverse” displacement uGΣ = u−uee of the beam, associated with
the distortion and/or the bending of this latter:

uG = uGee+uGΣ = uGee+uGχ1eχ1 +uGχ2eχ2 =
〈

uG , e
〉
e+
〈

uG , eχ1

〉
eχ1 +

〈
uG , eχ2

〉
eχ2

• three functions associated with the small rotation of the cross-section Σ(s), which are the
three components in a given vector basis of the vector θθθ: while the projection θe =

〈
θθθ, e
〉

on the beam axis is the angle of twist (the cross-section rotates around its normal vector),
the other two projections on eχ1 and eχ2 constitute the bending rotation θθθΣ = θθθ−θee of
the cross-section, which then rotates around an axis contained in its plane:

θθθ = θee+θθθΣ = θee+θχ1eχ1 +θχ2eχ2 =
〈
θθθ, e
〉
e+
〈
θθθ, eχ1

〉
eχ1 +

〈
θθθ, eχ2

〉
eχ2

These different motions, which correspond to the Timoshenko beam model, are shown in
Figure 6.4.

Infinitesimal strain tensor

The infinitesimal strain tensor is, as in 3D continuum mechanics, the symmetrical part of the
displacement gradient tensor (see Paragraph 1.3.2); this latter is calculated from the previous
expressions, in the Cartesian vector basis (e,eχ1 ,eχ2), as:

Dxu =
∂u

∂ s
⊗ e+

∂u

∂ χ1
⊗ eχ1 +

∂u

∂ χ2
⊗ eχ2
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Figure 6.4: Elongation (top left), distortion (top right), torsion (bottom left) and bending (bottom
right) of a beam.

and by rewriting that θθθ∧xΣ = θ❛∧xΣ = θ❛∧(χ1eχ1 +χ2eχ2), we then obtain, by noting •′ = d•
ds

:

Dxu =
(
u′

G +(θ❛∧)′xΣ

)
⊗ e+(θ❛∧eχ1)⊗ eχ1 +(θ❛∧eχ2)⊗ eχ2

In the case of a straight beam, by introducing the projections •e =
〈
•, e
〉

on the axis e on the one
hand, and •Σ = •−

〈
•, e
〉
e on the plane associated with the cross-section Σ(s) on the other hand,

we can reorganize terms as:

Dxu =
(
u′Ge +

〈
(θ❛∧)′xΣ , e

〉)
e⊗ e+

(
u′

GΣ +
(
(θ❛∧)′xΣ

)

Σ

)
⊗ e+θ❛∧(I− e⊗ e)

and, noting that
〈

θ❛∧e, e
〉
=
〈

θa∧ e, e
〉
= 0, the displacement gradient tensor is finally written as:

Dxu =
(
u′Ge +

〈
(θ❛∧)′xΣ , e

〉)
e⊗ e+

(
u′

GΣ −θ❛∧e+
(
(θ❛∧)′xΣ

)

Σ

)
⊗ e+θ❛∧

Taking the symmetrical part of this tensor, since ❛∧ is antisymmetrical, we arrive at the following
expression of the infinitesimal strain tensor:

–ε =
(
u′Ge +

〈
θθθ′∧xΣ , e

〉)
e⊗ e+

(
u′

GΣ −θθθ∧ e
)
⊗S e+(θθθ′∧xΣ)Σ ⊗S e

writing c1 ⊗S c2 = (c1 ⊗ c2 + c2 ⊗ c1)/2 for the symmetrical part of the tensor product c1 ⊗ c2, and
replacing θ❛∧ with the corresponding small rotation vector θθθ.

We then see that the infinitesimal strain tensor is antiplane, i.e. that its plane part (in the plane of
the cross-section) is equal to zero: indeed, the expression we have just established does not include
terms along eχ1 ⊗ eχ1 , eχ2 ⊗ eχ2 , or eχ1 ⊗ eχ2 , but only terms related to the axis e of the beam:

• the first term, of the form εeee⊗ e, consists of a longitudinal strain along the beam, and
combines two effects:

1. a term u′Ge which corresponds to the rate of variation, along the beam, of the longitudinal
displacements of the (centres of) cross-sections, and therefore directly translates, in
terms of strain, the elongation (which is homogeneous in the cross-section) of the beam;
Figure 6.5 presents the particular case where this strain is also homogeneous along the
beam;
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Figure 6.5: Longitudinal strain field in the case of a beam in elongation (the arrows representing
the associated displacement field).

2. a term
〈
θθθ′∧xΣ , e

〉
=
〈
(θ ′

ee+θθθ′
Σ)∧xΣ , e

〉
=
〈
θθθ′

Σ ∧xΣ , e
〉

which corresponds to the rate
of variation, along the beam, of the bending rotation of the cross-sections, which, by
turning about an axis contained in their plane, tend to stretch or squeeze small segments
initially taken parallel to the neutral axis, in a linear way across the cross-section;
Figure 6.6 allows us to notice this linear evolution according to the height of the beam,
in the particular case where the bending is achieved around a horizontal axis;

Figure 6.6: Longitudinal strain field in the case of a bending beam (the arrows representing the
associated displacement field).

• the second and third terms, of the form γγγΣ ⊗S e = 2εχ1eeχ1 ⊗S e+ 2εχ2eeχ2 ⊗S e, reflect a
distortion along the beam, with two distinct effects:

1. the first one, associated with the term (u′
GΣ −θθθ∧ e) = (u′

GΣ −θθθΣ ∧ e), reflects a distor-
tion associated with the bending rotation of the cross-sections, which means that these
latter do not remain perpendicular to the deformed neutral axis: this term, often referred
to as “transverse shear”, will be analysed more precisely in Paragraph 6.1.3;

2. the second one, linked to (θθθ′ ∧ xΣ)Σ = θθθ′ ∧ xΣ −
〈
θθθ′∧xΣ , e

〉
e = θθθ′ ∧ xΣ −θθθ′

Σ ∧ xΣ =
θ ′

ee∧xΣ reflects the rate of variation along the beam of the angle of twist of the cross-
sections, thus reflecting the torsion of the beam where the cross-sections rotate around
the axis e; Figure 6.7 shows the evolution, which is linear according to the two directions
of the cross-section plane, of the shear strain.
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Figure 6.7: Shear strain field in the case of a beam in torsion (the arrows representing the associated
displacement field).

■ Example 6.1 — Expression of the kinematics of a beam in a Cartesian vector basis. We detail here
the kinematics that we have just established in the case of a straight beam, after projection of these relations on the
vectors (ix, iy, iz) of a Cartesian basis, where ix is the beam axis. In this case, the arc length is simply s = x ∈ [0,L],
where L is the length of the beam, and the other two coordinates are (χ1,χ2) = (y,z).

The displacement field at time t of a point M of coordinates (x,y,z) in the vector basis (ix, iy, iz) can then be
written as:

u(x,y,z, t) = uG(x, t)+θθθ(x, t)∧ (yiy + ziz)

hence the following projections of the displacement in the vector basis (ix, iy, iz):

ux(x,y,z, t) = uGx(x, t)+θy(x, t)z−θz(x, t)y

uy(x,y,z, t) = uGy(x, t)−θx(x, t)z

uz(x,y,z, t) = uGz(x, t)+θx(x, t)y

where (uGx,uGy,uGz) and (θx,θy,θz) are respectively the components of uG and θθθ in the basis (ix, iy, iz).
After differentiating the displacement components with respect to the spatial coordinates, the infinitesimal strain

tensor at point M and time t can then be expressed in the vector basis (ix, iy, iz) as:

–ε(x,y,z, t) =





εxx(x,y,z, t) εxy(x,y,z, t) εxz(x,y,z, t)
εxy(x,y,z, t) 0 0
εxz(x,y,z, t) 0 0





(ix,iy,iz)

with, introducing •′ = d•
dx

:

• on the one hand, the longitudinal strain (i.e. along the axis ix of the beam), expressed as:

εxx(x,y,z, t) =
∂ux

∂x
(x,y,z, t) = u′Gx(x, t)+θ ′

y(x, t)z−θ ′
z(x, t)y

whose terms correspond, for the first one, to the elongation of the beam along ix (uniaxial strain associated
with tensile stresses) and, for the other two, to the elongation caused by the bending rotation θθθ = θyiy +θziz
of the cross-sections, which results in a heterogeneous elongation or shortening of small segments taken
parallel to the beam axis;

• and, on the other hand, the distortion γγγΣ resulting in:

εxy(x,y,z, t) =
1
2

(
∂ux

∂y
(x,y,z, t)+

∂uy

∂x
(x,y,z, t)

)

=
1
2

(

u′Gy(x, t)−θz(x, t)
)

− 1
2

θ ′
x(x, t)z

εxz(x,y,z, t) =
1
2

(
∂ux

∂ z
(x,y,z, t)+

∂uz

∂x
(x,y,z, t)

)

=
1
2

(
u′Gz(x, t)+θy(x, t)

)
+

1
2

θ ′
x(x, t)y
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the sum of the first two terms of each expression corresponding to the shear strain caused by bending,
illustrated in the figure below (for εxy in the case where θx = 0), and which will be detailed in Paragraph 6.1.3,
and the last term being associated with the angle of twist θx of the cross-sections around their normal vector,
which is the axis ix of the beam.

We also verify that the plane part of the infiniteseimal strain tensor (in the plane of the cross-sections) is equal
to zero: εyy = εzz = εyz = 0, since the cross-sections are assumed to be perfectly rigid.

These results effectively correspond to the generic expression determined above:

–ε =
(
u′Ge +

〈
θθθ′Σ ∧xΣ , e

〉)
e⊗ e+

(
u′

GΣ −θθθΣ ∧ e
)
⊗S e+(θ ′

ee∧xΣ)⊗S e

which leads to:

–ε =
(
u′Gx +

〈
(θ ′

yiy +θ ′
ziz)∧ (yiy + ziz), ix

〉)
ix ⊗ ix

+
(

u′Gyiy +u′Gziz − (θyiy +θziz)∧ ix

)

⊗S ix +(θ ′
xix ∧ (yiy + ziz))⊗S ix

when we express e = ix, eχ1 = iy, eχ2 = iz, and xΣ = yiy + ziz. ■

Summary 6.1 — Kinematics of a (Timoshenko) beam . The basic kinematic assumption for
a beam is to consider that the cross-sections are perfectly rigid, which implies a displacement
field of the form:

u(s,χ1,χ2, t) = uG(s, t)+θθθ(s, t)∧xΣ(χ1,χ2), ∀t

for any point M of coordinates (s,χ1,χ2) in the vector basis (e,eχ1 ,eχ2) associated with the
beam. uG and θθθ refer respectively to the displacement of the cross-section centre G and the
(small) rotation vector of the cross-section Σ of coordinate s, while xΣ is the placement vector in
the cross-section of the point under study.

The infinitesimal strain tensor is expressed, in the case of a straight beam, and by noting

•′ = d•
ds

, as:

–ε = εeee⊗ e+γγγΣ ⊗S e =
(
u′Ge +

〈
θθθ′

Σ ∧xΣ , e
〉)

e⊗ e+
(
u′

GΣ −θθθΣ ∧ e
)
⊗S e+(θ ′

ee∧xΣ)⊗S e

with the projections •e =
〈
•, e
〉

on the axis e and •Σ = •−
〈
•, e
〉
e in the plane of the cross-

section Σ. This corresponds to Timoshenko beam model.

! The assumption of a perfectly rigid cross-section is only an approximation: thus, in the case
of a tensile load along the beam axis, we expect in reality to have a reduction in the transverse
dimensions of the beam due to Poisson’s effect. In fact, this approximation is not prejudicial
to the problems that will be solved, by virtue of the antiplane form of the stress tensor, which
will be adopted in Paragraph 6.2.1.
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Besides, the hypothesis of a perfectly rigid cross-section is also undermined in the case
of the torsion of beams of non-circular cross-sections: indeed, we saw in Example 5.3 on
page 126 that, in this case, the so-called phenomenon of “warping” appeared, consisting in
an out-of-plane deformation of the different cross-sections, which also rotate around their
normal vector. Here again, this is not prejudicial to the solution of a beam problem, provided
one takes into account the modification, caused by the warping, of the torsional rigidity of the
beam, as highlighted in Example 5.6 on page 136: this correction then requires solving the
associated continuum mechanics problem.

6.1.3 Euler-Bernoulli hypothesis

When the beams are “thin”, i.e. when the ratio between the transverse dimensions and the length
of the beam is very small (e. g. H/L ≪ 1 in the case of a three-point bending test), it is possible
to introduce an additional kinematic assumption, called Euler-Bernoulli hypothesis, consisting
in assuming that the cross-sections, which are initially perpendicular to the beam axis, remain
perpendicular to the deformed neutral axis. Figure 6.8 proposes an experimental illustration of this
assumption in the case of a three-point bending test analyzed by digital image correlation: it is clear
that the different cross-sections of the deformed beam are perpendicular to the deformed neutral
axis represented in blue, whose placement vector is given by xG(s) = se+uG(s), at a given time.

Figure 6.8: Experimental illustration of Euler-Bernoulli hypothesis in the case of a three-point
bending test (digital image correlation measurements).

Displacement expression

Let us study the consequence of this hypothesis on the displacement field and strain tensor for
a beam. More precisely, we must express that each cross-section remains perpendicular to the
vector tangent to the neutral axis: by definition, this tangent vector is collinear to the vector
x′G(s) =

(
se+uG(s)

)′
= e+u′

G(s). In addition, since each cross-section is perpendicular to the axis
e in the reference configuration, the normal vector to this cross-section in the current configuration
can be expressed as Re = (I+ θ❛∧)e = e+θθθ∧ e. Euler-Bernoulli hypothesis then consists in
expressing that these last two vectors are collinear to each other:

(e+u′
G)∧ (e+θθθ∧ e) = 0

or, up to order one, after expanding this vector product:

0 = u′
G ∧ e+ e∧ (θθθ∧ e) =−e∧u′

GΣ +θθθ−
〈
θθθ, e
〉
e =−e∧u′

GΣ +θθθΣ

where, finally:

θθθΣ = e∧u′
GΣ

or else:
u′

GΣ = θθθΣ ∧ e
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Euler-Bernoulli hypothesis thus makes it possible to link the bending rotation of each cross-section
to the derivative of the transverse displacement of the neutral axis.

By introducing this relation into the expression of the displacement determined in the previous
paragraph, we finally obtain that the displacement of any point M of the beam, of coordinates
(s,χ1,χ2), is written as:

u(s,χ1,χ2, t) = uG(s, t)+
(
θe(s, t)e+ e∧u′

GΣ(s, t)
)
∧xΣ(χ1,χ2), ∀t

Thus, taking into account Euler-Bernoulli hypothesis allows us to reduce to four (instead of six) the
number of scalar functions required to describe the displacement of all the points of a beam:

• the three components of the displacement uG of the neutral axis;
• the angle of twist θe of each cross-section, knowing that the two components of θθθΣ are related

to uGΣ because of Euler-Bernoulli hypothesis.

Infinitesimal strain tensor

When Euler-Bernoulli hypothesis is taken into account, the expression of the infinitesimal strain
tensor becomes, in the case of a straight beam:

–ε =
(
u′Ge +

〈
(e∧u′

GΣ)
′∧xΣ , e

〉)
e⊗ e+(u′

GΣ − (e∧u′
GΣ)∧ e)⊗S e+(θ ′

ee∧xΣ)⊗S e

or, finally, after the development of all the vector triple products:

–ε =
(
u′Ge −

〈
u′′

GΣ , xΣ

〉)
e⊗ e+(θ ′

ee∧xΣ)⊗S e

Thus, the main effect of this hypothesis is the cancellation of the “transverse shear” term, i.e. the
distortion associated with the bending rotation of the cross-sections: indeed, since we assumed that
these latter remained perpendicular to the deformed neutral axis, the initially right angles remain
right, and there is, therefore, no distortion associated with the bending of the beam.

Figure 6.9 allows for experimentally verifying the validity of this hypothesis in the case of a
three-point bending test: the values of the shear strain field, obtained by digital image correlation,
are much lower than those of the longitudinal strain field, except in the vicinity of the supports
where higher values are measured. This effect would be more pronounced if the beam had an
even smaller H/L ratio: in this respect, the beam model based on Euler-Bernoulli hypothesis is an
approximation of Timoshenko beam model.

Figure 6.9: Longitudinal strain (left) and shear strain (right) fields measured by digital image
correlation in the case of a three-point bending test.
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In addition, it is also verified that experimentally, the longitudinal strain field evolves in a
substantially linear manner in the thickness except, once again, in the vicinity of the supports;
according to Saint-Venant’s principle, this allows for verifying the validity of the longitudinal strain
for the proposed beam model:

εee = u′Ge −
〈

u′′
GΣ , xΣ

〉

showing that the effects of elongation and bending simply add up.

■ Example 6.2 — Expression of the kinematics of an Euler-Bernoulli beam in a Cartesian vector
basis. Here we use the case of Example 6.1, where the straight beam is of axis ix, with cross-sections initially in
the plane (iy, iz).

Taking into account Euler-Bernoulli hypothesis then allows us to write the displacement at time t of a point M
of coordinates (x,y,z) in the vector basis (ix, iy, iz) as:

u(x,y,z, t) = uG(x, t)+
(
θx(x, t)ix + ix ∧u′

GΣ(x, t)
)
∧ (yiy + ziz)

hence the following projections of the displacement field in the vector basis (ix, iy, iz):

ux(x,y,z, t) = uGx(x, t)−u′Gy(x, t)y−u′Gz(x, t)z

uy(x,y,z, t) = uGy(x, t)−θx(x, t)z

uz(x,y,z, t) = uGz(x, t)+θx(x, t)y

as shown, in the case of the component ux and a bending angle θz < 0 around the axis iz, in the figure below (where
u′Gz = 0 and θx = 0).

After differentiation, the infinitesimal strain tensor at point M can then be expressed, at time t and in the vector
basis (ix, iy, iz), as:

–ε(x,y,z) =





εxx(x,y,z, t) εxy(x,y,z, t) εxz(x,y,z, t)
εxy(x,y,z, t) 0 0
εxz(x,y,z, t) 0 0





(ix,iy,iz)

with:
• on the one hand, the longitudinal strain being expressed as:

εxx(x,y,z, t) =
∂ux

∂x
(x,y,z, t) = u′Gx(x, t)−u′′Gy(x, t)y−u′′Gz(x, t)z

whose terms reflect, as before, for the first one, the elongation of the beam along ix and, for the other two, the
elongation caused by the bending of the beam, which is now directly related to the “curvature” of this latter,
associated with the second derivatives u′′Gy and u′′Gz of the transverse displacement of the neutral axis;
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• and, on the other hand, the shear strain resulting in:

εxy(x,y,z, t) =
1
2

(
∂ux

∂y
(x,y,z, t)+

∂uy

∂x
(x,y,z, t)

)

=−1
2

θ ′
x(x, t)z

εxz(x,y,z, t) =
1
2

(
∂ux

∂ z
(x,y,z, t)+

∂uz

∂x
(x,y,z, t)

)

=
1
2

θ ′
x(x, t)y

for which only remains the effect related to the torsion of the beam, associated with the rotation of the
cross-sections around the axis of the beam.

This result is of course based on the generic expression of the infinitesimal strain tensor:

–ε =
(
u′Ge −

〈
u′′

GΣ , xΣ

〉)
e⊗ e+(θ ′

ee∧xΣ)⊗S e

expressing e = ix, eχ1 = iy, eχ2 = iz, and xΣ = yiy + ziz. ■

Summary 6.2 — Kinematics of a (Euler-Bernoulli) beam. In the case of thin beams, we
can add to the kinematics of a Timoshenko beam Euler-Bernoulli hypothesis, which consists in
expressing that the cross-sections remain perpendicular to the deformed neutral axis:

θθθΣ(s, t) = e∧u′
GΣ(s, t), ∀s, ∀t

where u′
GΣ = u′

G −
〈

u′
G , e
〉
e, which finally implies a displacement field of the form:

u(s,χ1,χ2, t) = uG(s, t)+
(
θe(s, t)e+ e∧u′

GΣ(s, t)
)
∧xΣ(χ1,χ2), ∀t

for any point M of coordinates (s,χ1,χ2) in the vector basis (e,eχ1 ,eχ2) associated with the
beam. uG and θe refer respectively to the displacement of the cross-section centre G and the
(small) angle of twist (i.e. around the e axis) of the cross-section Σ of coordinate s, while xΣ is
the placement vector in the cross-section of the point under study.

The infinitesimal strain tensor is then expressed, in the case of a straight beam, as:

–ε = εeee⊗ e+γγγΣ ⊗S e =
(
u′Ge −

〈
u′′

GΣ , xΣ

〉)
e⊗ e+(θ ′

ee∧xΣ)⊗S e

This corresponds to Euler-Bernoulli beam model.

R In the case of a curved beam, the expression of the displacement field remains the same as in Sum-
maries 6.1 and 6.2. However, when calculating the infinitesimal strain tensor, it is necessary to take into
account the dependence of the vectors e, eχ1 and eχ2 on the arc length s.

So, since e is a unit vector, we know that
(
∥e(s)∥2 )′ = 2

〈
e′(s), e(s)

〉
= 0, ∀s, and we then define the

normal vector as:
n(s) = ρ(s)e′(s), ∀s

where ρ is called “radius of curvature” of the neutral axis, and is such that the normal vector n is
unitary.
In addition, the “binormal” vector is defined as:

b(s) = e(s)∧n(s), ∀s

which provides a natural orthonormal vector basis associated with the geometry of the beam, the vectors
n(s) and b(s) being in the plane of the cross-section of arc length s. In particular, we can show the
following relations, which are useful when differentiating kinematic expressions with respect to s:

n′(s) =− 1
ρ(s)

e(s)− 1
τ(s)

b(s), ∀s

where τ is called the “radius of torsion” of the neutral axis, and:

b′(s) =
1

τ(s)
n(s), ∀s
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6.2 Internal loads in a beam

In addition to the above, the second ingredient of a beam model is to make assumptions about the
internal forces (or “internal loads”) within a beam so as to assume a simplified form of the stress
tensor, and to arrive at a condensed representation of these internal forces.

6.2.1 Assumption on the stresses

Here we take the example of a beam clamped at one end on a fixed support, and subjected to a
uniform pressure on its upper surface. Since the internal forces associated with this case of study
are not directly measurable, an alternative may be to rely on numerical simulation to determine the
stress field within the beam by addressing the general problem of continuum mechanics. We will
then focus on the stress tensor that we develop as follows:

–σ = –σΣ +τττΣ ⊗ e+ e⊗τττΣ +σeee⊗ e

or, in matrix form in the vector basis (e,eχ1 ,eχ2):

–σ =







σee τττΣ
T

τττΣ –σΣ







decomposed into blocks to distinguish between what is relative to the axis e of the beam, and to
the plane Σ of the cross-section. In particular, –σΣ refers to the plane part of the stress tensor –σ

in the plane of the cross-section, while the quantities σee and τττΣ = ( –σe)Σ = –σe−
〈

–σe, e
〉
e refer

respectively to the normal stress, and the shear stress in the plane of the cross-section.
Figure 6.10 then represents a certain number of components of the stress tensor –σ in a cross-

section located “far enough away” from the fixed support condition (in the sense of Saint-Venant’s
principle). It thus shows that the orders of magnitude of each component are very different: the
predominant component is the normal stress σee along the beam axis, which is much stronger than
the shear stress τττΣ in the cross-section, this latter being much larger than the components of the
plane part of the stress tensor –σΣ.

Besides, an asymptotic study, the detail of which is beyond the scope of this course, would
establish that, generally speaking, in a beam, we have:

∥ –σΣ∥
|σee|

= O

(
H2

L2

)

where H is an order of magnitude of the transverse dimensions of the beam and L is its length.
In conclusion, the hypothesis systematically adopted in beam models is to assume that the plane

part of the stress tensor is equal to zero:

–σΣ = 0

which is to say that the stress tensor is antiplane. This is consistent with the kinematic assumption
of a perfectly rigid cross-section, seen above: indeed, this implies that the components of the
internal forces in the plane of the cross-section are not accessible since this latter does not deform.
We will therefore not attempt to estimate them here since they can be neglected.

Consequently, the knowledge of the internal forces in a beam is limited to that of the stress
vector that is considered when performing a cut according to a cross-section of the beam:

–σe = σeee+τττΣ = σeee+σχ1eeχ1 +σχ2eeχ2
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Figure 6.10: Stress field obtained in a cross-section by numerical simulation for a beam subjected
to bending.

which is a cut with normal vector the axis e of the beam. In order to simplify the calculations
associated with the solution of a beam model, we will then limit ourselves to describing the internal
forces in terms of the resultant force and moment of these loadings on each cross-section, which,
again, is consistent with assuming that these cross-sections are perfectly rigid. This is the purpose
of the following two paragraphs.

6.2.2 Resultant force of the internal loads and associated equilibrium equation

Thus, we study a beam of axis e that we cut according to the cross-section Σ of coordinate s, in
order to get, at time t and at any point M of coordinates (χ1,χ2) in the cross-section, the stress
vector:

–σ(s,χ1,χ2, t)e = σee(s,χ1,χ2, t)e+τττΣ(s,χ1,χ2, t)

where σee =
〈

–σe, e
〉

is the normal stress in the cross-section, and τττΣ = ( –σe)Σ = –σe−
〈

–σe, e
〉
e is

the shear stress in the plane of the cross-section.

Resultant force of the internal loads. The resultant force R of the internal loads in the
cross-section of coordinate s is defined in a classical way as the resultant force associated with
the stress vector in the cross-section:

R(s, t) =
∫

Σ(s)

–σ(s,χ1,χ2, t)edS, ∀s ∈ [0,L], ∀t

This definition is then equivalent to expressing the local forces exerted by the “downstream”
segment of the beam (i.e. the beam segment of coordinates strictly greater than s) on the
“upstream” segment (i.e. the beam segment of coordinates strictly smaller than s), since we have
chosen, to express the stress vector, n = e as the outer unit normal vector.
The following components of the resultant force of the internal loads, represented in Figure 6.11,
are then defined as follows:

• the component Re =
〈

R, e
〉
, called “axial force”, or “normal force” (also noted as N);
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• the vector RΣ = R−
〈

R, e
〉
e, called “shear force”, with components Rχ1 and Rχ2 in the

vector basis (eχ1 ,eχ2) (also noted as Tχ1 and Tχ2).

Figure 6.11: Definition of the components of the resultant force of the internal loads.

! The choice of orientation in the definition of the resultant force of internal loads is purely
conventional. This latter could also have been defined as the resultant force of the action of
the “upstream” segment on the “downstream” segment of the beam, considering an outer unit
normal vector n =−e:

R̃ =
∫

Σ(s)

–σ(−e)dS

a convention that is also found in Anglo-Saxon countries. It is therefore essential to specify
the sign convention adopted before solving a beam problem.

Equilibrium equation for the resultant force: global approach

We will now determine the equilibrium equation that this resultant force, in the static or quasi-static
framework, must satisfy. First of all, we assume that, like any continuous medium, the beam
is subjected to volume force densities fV in its domain Ω, and surface force densities fS on the
boundary ∂Ω of its domain.

If we isolate, as shown in Figure 6.12, a segment ω of beam from the cut of the beam into two
parts at the cross-section Σ of coordinate s, we can establish that this segment is subjected:

• at 0 to the resultant force R0 of the external actions on this cross-section;
• at s to the resultant force of the internal loads on this cross-section;
• to external actions represented by volume force densities fV and surface force densities fS.
The static equilibrium equation of this segment ω is then written as:

∫

ω
fV dV +

∫

∂lω
fS dS+

∫

Σ(0)
fS dS+

∫

Σ(s)

–σedS = 0

where the surface integrals are distinguished according to whether they concern the two cross-
sections of coordinates 0 and s respectively, or the lateral surface ∂lω of the segment. By introducing
the resultant force of the internal loads at s and the resultant force associated with the external
actions at 0, then by decomposing the integrals, we obtain:

∫ s

0

∫

Σ
fV dSds+

∫ s

0

∫

∂Σ
fS dl ds+R0 +R(s) = 0

where ∂Σ refers to the boundary of the cross-section Σ.
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Figure 6.12: Equilibrium for the resultant force: the beam is cut into two segments at the cross-
section Σ(s).

Line force density. Knowing the volume and surface force densities exerted on the beam, we
define an equivalent line force density fL as:

fL(s) =
∫

Σ(s)
fV (s,χ1,χ2)dS+

∫

∂Σ(s)
fS(s,χ1,χ2)dl

for any cross-section Σ of coordinate s distinct from the ends of the beam. Considering the
dimensions of the volume force densities fV (in N/m3) on the one hand, and surface force
densities fS (in N/m2) on the other hand, the density fL has as units N/m, and is therefore
effectively homogeneous to a line force density.

With this definition, the force equilibrium equation becomes:

∫ s

0
fL(ξ )dξ +R0 +R(s) = 0, ∀s ∈ (0,L)

which allows for determining the expression of the resultant force R along the neutral axis of the
beam. This static equilibrium equation is also valid in the quasi-static case since it amounts to
neglecting the terms of inertia in the equilibrium equation of the segment ω ; on the other hand, the
different quantities can then depend on time t.

Similarly, the isolation of the other segment ω∗ implies to take into account:
• at L the resultant force RL of the external actions on this cross-section;
• at s the resultant force of the internal loads on this cross-section, which is then expressed as
−R(s) since it is the action of the “upstream” part of the beam on the “downstream” part;

• external actions represented by volume force densities fV and surface force densities fS.
By doing the same as before, we obtain, in terms of resultant forces:

∫ L

s
fL(ξ )dξ +RL −R(s) = 0, ∀s ∈ (0,L)
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R If the choice of the isolated segment to express the resultant force of the internal loads is arbitrary, the
two expressions naturally lead to the same result. Indeed, if we add the two equilibrium equations, we
find:

∫ L

0
fL(ξ )dξ +R0 +RL = 0

which corresponds to the global force equilibrium of the entire beam.

Summary 6.3 — Equilibrium equation for the resultant force of the internal loads (global

approach). The force equilibrium equation of a beam subjected to volume force densities fV

and surface force densities fS is written, in the static case and for the global approach, as:
∫ s

0
fL(ξ )dξ +R0 +R(s) = 0, ∀s ∈ (0,L)

or as: ∫ L

s
fL(ξ )dξ +RL −R(s) = 0, ∀s ∈ (0,L)

where fL is the line force density equivalent to the densities fV and fS:

fL(s) =
∫

Σ(s)
fV (s,χ1,χ2)dS+

∫

∂Σ(s)
fS(s,χ1,χ2)dl

and R0 and RL are the resultant forces of the external actions exerted on the cross-sections of
respective coordinates s = 0 and s = L.

! Strictly speaking, the previous relations do not allow for determining the expression of the
resultant force of the internal loads on the extreme cross-sections of the beam, at s = 0 and
s = L. For these latter, it is sufficient to consider the external surface forces exerted on the
corresponding cross-section to make the link with the definition of the resultant force R.

Thus, if R0 and RL are the resultant forces of the external actions exerted on the cross-sections
of coordinates s = 0 and s = L respectively, we obtain, by definition:

R0 =
∫

Σ(0)
fS dS =

∫

Σ(0)

–σ(−e)dS =−R(0)

since the outer unit normal vector for the beam at s = 0 is n =−e, and:

RL =
∫

Σ(L)
fS dS =

∫

Σ(L)

–σedS = R(L)

since the outer unit normal vector for the beam at s = L is n = e.

These differences in signs, depending on whether we are in s = 0 or s = L, can also be
interpreted with the sign convention established above, when approaching the end of the
beam. Thus, the action from the outside on the cross-section of coordinate L is indeed an
action of the “downstream” part on the “upstream” part (even if there is no beam strictly
speaking beyond s = L), which justifies the sign “+”: R(L) = RL.

Conversely, the action from the outside on the cross-section of coordinate 0 can be seen as an
action from the “upstream” part of the beam on the “downstream” part (even if there is no
beam strictly speaking before s = 0), hence the need to change the sign to remain consistent
with the definition of the resultant force of the internal loads: R(0) =−R0.

Of course, these expressions must be modified if the opposite sign convention is adopted for
defining the resultant force of the internal loads.
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■ Example 6.3 — Resultant force of the internal loads for a chimney exposed to wind: global
approach. A chimney is considered as a straight beam with a vertical axis iz (going upwards), a height H and an
annular cross-section of inner radius ri and outer radius re.

This latter is associated with the vector basis (ir(θ), iθ (θ)) such that (O, ir(θ), iθ (θ), iz) defines a cylindrical
coordinate system where O is the centre of the cross-section in contact with the ground. A point M of the chimney is
therefore positioned by its coordinates (r,θ ,z) in this system:

p ≈ x = xG(z)+xΣ = ziz + rir(θ), ∀r ∈ [ri,re], ∀θ ∈ [0,2π),∀z ∈ [0,H]

by adopting, as before, the infinitesimal deformation hypothesis. It is also assumed that the problem is static and
does not depend on time.
In addition, this chimney is subjected to two actions:

• the action of gravity at any point of its volume: fV =−ρgiz, where the density ρ is assumed to be uniform;
• the action of the wind at any point on its outer lateral surface ∂lΩ : fS =−Kz2 sin2(θ/2)ir(θ), where K is a

supposedly known constant.

If the chimney is cut at a cross-section of arbitrary altitude z, the isolation of the “downstream” segment ω∗ (i.e.
above the z cut) allows us to write, in statics, that:

∫ H

z
fL(ξ )dξ +RH −R(z) = 0

where RH = 0 since the upper surface of the chimney is free of forces, and where the line force density is calculated
as:

fL(z) =−
∫

Σ(z)
ρgiz dS−

∫

∂Σ(z)
Kz2 sin2(θ/2)ir(θ)dl

=−ρgπ
(

r2
e − r2

i

)

iz −Kz2
∫ 2π

0
sin2(θ/2)ir(θ)re dθ

=−ρgπ
(

r2
e − r2

i

)

iz −
Kre

2
z2
∫ 2π

0
(1− cosθ)(cosθ ix + sinθ iy)dθ

=−ρgπ
(

r2
e − r2

i

)

iz +
Kπre

2
z2ix

where it is assumed that ir(θ) is defined as ir(θ) = cosθ ix + sinθ iy in a Cartesian vector basis (ix, iy). This results
in:

R(z) =
∫ H

z

(

−ρgπ
(

r2
e − r2

i

)

iz +
Kπre

2
ξ 2ix

)

dξ =−ρgπ
(

r2
e − r2

i

)[

ξ
]H

z
iz +

Kπre

2

[
ξ 3

3

]H

z
ix

hence, finally:

R(z) =−ρgπ
(

r2
e − r2

i

)

(H − z)iz +
Kπre

6
(H3 − z3)ix, ∀z ∈ (0,H)

Thus the resultant force of the internal loads in the chimney consists of two components:
• the component Rz along iz is the axial force, which is a compression force since it is negative, and results

from the action of gravity;
• the component Rx along ix is the shear force, also noted Tx, and results from wind action.
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The isolation of the “upstream” part ω (i.e. below the cut in z) gives the same result, but requires first writing
the global equilibrium equation of the entire chimney to determine the resultant force R0 of the ground action on the
chimney:

R0 −mgiz +
∫

∂l Ω
fS dS = 0

where m = ρgπ
(
r2

e − r2
i

)
H is the mass of the chimney. In particular, we can see that we have:

R0 = ρgπ
(

r2
e − r2

i

)

Hiz −
Kπ

6
reH3ix =−R(0)

■

R Even if we have limited ourselves here to the (quasi-)static framework, the transition to the dynamic
framework is easy: taking into account the acceleration in the isolation of the segment ω allows us to
establish that: ∫

ω
ρ
..

x dV =
∫ s

0

∫

Σ
ρ
..

x dSdξ

where we can write that:
..

x =
..

u =
..

uG +
..

θθθ∧xΣ

and since G refers to the centre of the associated cross-section Σ, we have, by definition, that
∫

Σ
xΣ dS= 0,

and therefore that:
∫

ω
ρ
..

x dV =
∫ s

0
ρA

..

uG dξ

which finally results in:

∫ s

0
fL(ξ , t)dξ +R0(t)+R(s, t) =

∫ s

0
ρA

..

uG(ξ , t)dξ , ∀t

The isolation of the other segment ω∗ allows us to find that:

∫ L

s
fL(ξ , t)dξ +RL(t)−R(s, t) =

∫ L

s
ρA

..

uG(ξ , t)dξ , ∀t

Equilibrium equation for the resultant force: local approach

Instead of writing the equilibrium equation of a beam segment after cutting at a cross-section of
coordinate s, it is possible to establish a local relation verified by the resultant force of the inner
loads at any point on the neutral axis. For this, we start from the equilibrium equation established
above for a segment ω , where we express that the resultant force of the external actions on the
cross-section of coordinate 0 is R0 =−R(0):

∫ s

0
fL(ξ )dξ +R(s)−R(0) = 0

Since this expression is valid regardless of the coordinate s, it can be interpreted as the integration
of a relation, which is valid regardless of s as well:

∫ s

0

(
fL(ξ )+R′(ξ )

)
dξ = 0

where we note •′ = d•
ds

, which finally gives us:

fL(s)+R′(s) = 0, ∀s ∈ (0,L)

Here again, this static equilibrium equation is also valid in the quasi-static framework; in this case,
the different quantities can then depend on time t.
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The (quasi-)static local equilibrium of the beam is thus written as a first-order differential
equation in terms of the resultant force of the internal loads. To solve it, it is therefore necessary to
add a boundary condition, either at s = 0, or at s = L. As before, depending on whether we study
the cross-section of coordinate s = 0 or s = L, we obtain, by definition:

R0 =
∫

Σ(0)
fS dS =

∫

Σ(0)

–σ(−e)dS =−R(0)

since the outer unit normal vector at s = 0 is n =−e, and:

RL =
∫

Σ(L)
fS dS =

∫

Σ(L)

–σedS = R(L)

since the outer unit normal vector at s = L is n = e.

Summary 6.4 — Equilibrium equation for the resultant force of the internal loads: local

approach. The local force equilibrium of a beam subjected to volume force densities fV and
surface force densities fS is written, in the static case, as:

fL(s)+R′(s) = 0, ∀s ∈ (0,L)

where fL is the line force density equivalent to the densities fV and fS:

fL(s) =
∫

Σ(s)
fV (s,χ1,χ2)dS+

∫

∂Σ(s)
fS(s,χ1,χ2)dl

This differential equation is solved using a boundary condition to be written at s = 0 or s = L,
namely:

R(0) =−R0, or R(L) = RL

where R0 and RL are the resultant forces of the external actions exerted on the cross-sections of
coordinates s = 0 and s = L respectively.

R Instead of starting from the force equilibrium equation for a beam segment, we could also have directly
considered the local equilibrium equation established in continuum mechanics (in Paragraph 2.3.1),
namely:

divdivdivx –σ+ fV = ρ
..

u

where the divergence of the stress tensor can be rewritten as:

divdivdivx –σ =
∂ –σ

∂ s
e+

∂ –σ

∂ χ1
eχ1 +

∂ –σ

∂ χ2
eχ2 =

∂ –σ

∂ s
e+divdivdivxΣ –σ

By integrating the first equation on a cross-section Σ of coordinate s, we then obtain, in the case of a
straight beam (i.e. when e is constant):

∫

Σ

(
∂ –σ

∂ s
e+divdivdivxΣ –σ

)

dS+
∫

Σ
fV dS =

∂

∂ s

(∫

Σ

–σedS

)

+
∫

∂Σ

–σnl dl +
∫

Σ
fV dS =

∫

Σ
ρ
..

udS

by applying the divergence formula, with nl the outer unit normal vector to the contour ∂Σ of the
cross-section Σ, that is, finally:

R′+
∫

∂Σ
fS dl +

∫

Σ
fV dS =

∫

Σ
ρ
..

udS

or:

R′+ fL = ρA
..

uG

This proof shows that the local force equilibrium equation is what is obtained when we average, on
each cross-section, the three-dimensional equations of continuum mechanics, which is equivalent, in a
way, to “reducing” the equations on the neutral axis of the beam.
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■ Example 6.4 — Resultant force of the internal loads for a chimney exposed to wind: local
approach. Here we use Example 6.3 to highlight the local approach. The resultant force of the internal loads then
satisfies:

R′(z)+ fL(z) = 0, ∀z ∈ (0,H)

where •′ = d•
dz

, and where the line force density is expressed as:

fL(z) =−ρgπ
(

r2
e − r2

i

)

iz +
Kπre

2
z2ix

after assuming that ir(θ) is defined as ir(θ) = cosθ ix + sinθ iy in a Cartesian vector basis (ix, iy). We then find by
integration that the resultant force is:

R(z) = ρgπ
(

r2
e − r2

i

)

ziz −
Kπre

6
z3ix +C

The constant C is determined using a boundary condition; here, the most natural is the one at z = H: if we assume
that no forces are exerted on the associated cross-section (free boundary), we can write that R(H) = 0, hence, finally:

R(z) = ρgπ
(

r2
e − r2

i

)

(z−H)iz −
Kπre

6
(z3 −H3)ix

as before. ■

6.2.3 Moment of the internal loads and associated equilibrium equation

Similarly, and to be complete in terms of equations, it is necessary to define the moment associated
with the stress vector –σe when cutting the beam at the cross-section of coordinate s.

Moment of the internal loads. The moment M of the internal loads for a cross-section of
coordinate s is defined in a classical way as the moment, expressed at the centre G of the
cross-section, associated with the stress vector in the cross-section:

M(s, t) =
∫

Σ(s)
xΣ(χ1,χ2)∧

(

–σ(s,χ1,χ2, t)e
)

dS, ∀s ∈ [0,L], ∀t

where xΣ = x−xG is the placement vector in the cross-section of a point of the beam. As before,
this definition expresses the integration of the local moments exerted by the “downstream” part
of the beam on the “upstream” part, since we have chosen n = e to express the stress vector.
The following components of the moment of the internal loads, represented in Figure 6.13, are
then defined as follows:

• the component Me =
〈

M, e
〉

is called the “moment of torsion”, often noted Mt ;
• the vector MΣ = M−

〈
M, e

〉
e is called the “bending moment”, of components Mχ1 and

Mχ2 in the vector basis(eχ1 ,eχ2), often noted M f χ1 and M f χ2 .

Figure 6.13: Definition of the components of the moment of the internal loads.



170 Chapter 6. Beam approximation

! As for the resultant force, it is possible to define the moment with the other sign convention:

M̃ =
∫

Σ(s)
xΣ ∧

(

–σ(−e)
)

dS

which is the choice adopted in Anglo-Saxon countries. Thus, once again, it is essential to
specify the sign convention adopted before solving a beam problem.

Equilibrium equation for the moment: global approach

To determine the equilibrium equation verified by the moment of the internal loads, we proceed as
for the resultant force, by isolating a segment resulting from the cut into two parts of the beam at
the cross-section Σ of coordinate s, as illustrated in Figure 6.14. So, if we study the segment ω , it is
subjected:

• at 0 to the resultant force R0 and the moment M0 (expressed at the centre of this cross-section)
of the external actions on this latter;

• at s to the resultant force and the moment (expressed at the centre of this cross-section) of
the internal loads on this latter;

• to external actions represented by volume force densities fV and surface force densities fS.

Figure 6.14: Moment equilibrium: the beam is cut into two segments at the cross-section Σ(s).

We can then write the moment equilibrium of this segment, expressed at the centre G of the
cross-section of coordinate s where the cut was made:
∫

ω
(x−xG)∧ fV dV +

∫

∂lω
(x−xG)∧ fS dS+

∫

Σ(0)
(x−xG)∧ fS dS+

∫

Σ(s)
(x−xG)∧ –σedS = 0

where ∂lω is the lateral surface of the beam segment. Since, for a straight beam, the placement
vector of a point M in a cross-section of coordinate ξ can be decomposed as x = ξ e+xΣ, we obtain
the relation:
∫

ω

(
(ξ −s)e+xΣ

)
∧fV dV +

∫

∂lω

(
(ξ −s)e+xΣ

)
∧fS dS+

∫

Σ(0)
(−se+xΣ)∧fS dS+

∫

Σ(s)
xΣ∧ –σedS= 0

or by introducing the moment of the internal loads at s as well as the resultant force and moment of
the external actions, then by decomposing the integrals:
∫ s

0

∫

Σ

(
(ξ − s)e+xΣ

)
∧ fV dSdξ +

∫ s

0

∫

∂Σ

(
(ξ − s)e+xΣ

)
∧ fS dl dξ +M0 − se∧R0 +M(s) = 0

where ∂Σ refers to the boundary of the cross-section Σ.
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Line moment density. Knowing all the volume and surface force densities exerted on the beam,
we define an equivalent line moment density cL, expressed at the centre G of each cross-section
Σ of coordinate s as:

cL(s) =
∫

Σ(s)
xΣ ∧ fV (s,χ1,χ2)dS+

∫

∂Σ(s)
xΣ ∧ fS(s,χ1,χ2)dl

Considering the dimensions of the densities fV (in N/m3) and fS (in N/m2), the new density cL

has as units N, and is therefore effectively homogeneous to a line moment density.

By introducing the line force densities fL and line moment densities cL, we can then write that:
∫ s

0
(ξ − s)e∧ fL(ξ )dξ +

∫ s

0
cL(ξ )dξ +M0 − se∧R0 +M(s) = 0

Similarly, isolating the other segment ω∗, considering the moment equilibrium expressed at the
centre of the cross-section of coordinate s, simply leads to:

∫ L

s
(ξ − s)e∧ fL(ξ )dξ +

∫ L

s
cL(ξ )dξ +ML +(L− s)e∧RL −M(s) = 0

where the moment of the internal loads is expressed as −M(s), since it is the action of the “upstream”
part of the beam on the “downstream” part.

R As in the case of the resultant force, the sum of the two previous relations allows for finding the global
moment equilibrium of the entire beam:

∫ L

0
(ξ − s)e∧ fL(ξ )dξ +

∫ L

0
cL(ξ )dξ +M0 − se∧R0 +ML +(L− s)e∧RL = 0

Noticing then that:
∫ L

0
−se∧ fL(ξ )dξ =−se∧

(∫ L

0
fL(ξ )dξ

)

= se∧ (R0 +RL)

by virtue of the global force equilibrium equation for the entire beam, it is then possible to write that:

∫ L

0
ξ e∧ fL(ξ )dξ +

∫ L

0
cL(ξ )dξ +M0 +ML +Le∧RL = 0

which corresponds to the global moment equilibrium of the entire beam, expressed at the centre of the
cross-section of coordinate s = 0.

Summary 6.5 — Equilibrium equation for the moment of the internal loads (global

approach). The moment equilibrium equation of a beam subjected to volume force densities
fV and surface force densities fS is written, in the static case and for the global approach, as:

∫ s

0
(ξ − s)e∧ fL(ξ )dξ +

∫ s

0
cL(ξ )dξ +M0 − se∧R0 +M(s) = 0, ∀s ∈ (0,L)

or as:
∫ L

s
(ξ − s)e∧ fL(ξ )dξ +

∫ L

s
cL(ξ )dξ +ML +(L− s)e∧RL −M(s) = 0, ∀s ∈ (0,L)

where cL is the line moment density equivalent to the densities fV and fS:

cL(s) =
∫

Σ(s)
xΣ(χ1,χ2)∧ fV (s,χ1,χ2)dS+

∫

∂Σ(s)
xΣ(χ1,χ2)∧ fS(s,χ1,χ2)dl
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and M0 and ML are the moments (expressed at the centres of the corresponding cross-sections)
of the external actions exerted on the cross-sections of respective coordinates s = 0 and s = L.

! Strictly speaking, the previous relations do not allow us to determine the expression of the
moment of the internal loads on the extreme cross-sections of the beam, at s = 0 and s = L.
As in the case of the resultant force, in this case, it is sufficient to consider the external surface
forces exerted on the corresponding cross-section to make the link with the definition of the
moment M.
Thus, if M0 and ML are the moments of external actions on the cross-sections of coordinates
s = 0 and s = L respectively, we establish that:

M0 =
∫

Σ(0)
xΣ ∧ fS dS =

∫

Σ(0)
xΣ ∧ –σ(−e)dS =−M(0)

since the outer unit normal vector for the beam at s = 0 is n =−e, and:

ML =
∫

Σ(L)
xΣ ∧ fS dS =

∫

Σ(L)
xΣ ∧ –σedS = M(L)

since the outer unit normal vector for the beam at s = L is n = e.
Of course, these terms must be modified if the opposite sign convention is adopted for defining
the moment of the internal loads.

■ Example 6.5 — Moment of the internal loads in a chimney exposed to wind: global approach.
We use Example 6.3 of the chimney subjected to wind, in order to determine this time the evolution of the moment
of the internal loads along the beam modelling this chimney. It should be remembered that this latter is subjected to:

• the action of gravity at any point of its volume: fV =−ρgiz;
• the action of the wind on its outer lateral surface ∂lΩ: fS =−Kz2 sin2(θ/2)ir(θ);

where a cylindrical coordinate system (O, ir(θ), iθ (θ), iz) has been associated with the beam.
If the chimney is cut at a cross-section of given altitude z, the isolation of the “downstream” segment ω∗ (i.e.

above the z cut) allows for obtaining, in statics, when expressing the moment equilibrium equation at the centre of
Σ(z):

∫ H

z
cL(ξ )dξ +

∫ H

z
(ξ − z)iz ∧ fL(ξ )dξ +MH +(L− z)iz ∧RH −M(z) = 0

where RH and MH , which characterize the action of the external forces on the cross-section of altitude z = H, are
zero, since the surface is free of forces.
In addition, the line moment density along the chimney is calculated as:

cL(z) =−
∫

Σ
xΣ ∧ρgiz dS−

∫

∂Σ
xΣ ∧Kz2 sin2(θ/2)ir(θ)dl

=−
∫

Σ
rir(θ)∧ρgiz dS−

∫

∂Σ
rir(θ)∧Kz2 sin2(θ/2)ir(θ)dl

= ρg
∫ re

ri

r2 dr
∫ 2π

0
iθ (θ)dθ

= 0

knowing that the line force density is expressed as:

fL(z) =−ρgπ
(

r2
e − r2

i

)

iz +
Kπre

2
z2ix

All the above results finally show that:

M(z) =
∫ H

z

Kπre

2
(ξ − z)ξ 2iy dξ =

Kπre

2

[ξ 4

4
− z

ξ 3

3

]H

z
iy =

Kπre

24

(

z4 −4H3z+3H4
)

iy

which is a bending moment around the axis iy, related to wind action only. We can therefore see that the action of
gravity has no effect on the beam, because this latter is vertical.
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The isolation of the “upstream” part ω (i.e. below the z cut) gives the same result, but requires first writing the
global equilibrium equation of the entire chimney in order to determine the moment M0 (expressed at the centre of
the cross-section of altitude z = 0) of the ground’s action on the chimney:

M0 +
∫

Ω
x∧ fV dV +

∫

∂l Ω
x∧ fS dS = 0

where the moment of gravity’s action here is zero. In particular, we can see that we have:

M0 =−Kπre

8
H4iy =−M(0)

■

R The extension to the dynamic framework involves taking into account the time derivative of the angular
momentum (expressed at the centre G of the cut cross-section):

∫

ω
(x−xG)∧ρ

..

x dV =
∫ s

0

∫

Σ

(
(ξ − s)e+xΣ

)
∧ρ

..

x dSdξ

By transforming, as in Paragraph 6.2.2, the following inertia term as:

∫

Σ
xΣ ∧ρ

..

x dS =
∫

Σ
xΣ ∧ρ

..

uG dS+
∫

Σ
xΣ ∧ (ρ

..

θθθ∧xΣ)dS =
∫

Σ
xΣ ∧ (ρ

..

θθθ∧xΣ)dS

since
∫

Σ
xΣ dS = 0, we then obtain:

∫

Σ(s)
xΣ ∧ (ρ

..

θθθ∧xΣ)dS = ρJ
..

θθθ

assuming ρ is homogeneous in the cross-section, and posing:

J=
∫

Σ

(

∥xΣ∥2I−xΣ ⊗xΣ

)

dS

called “area inertia tensor”, which will be studied in Paragraph 6.3.3.

Finally, in the dynamic framework, taking into account the inertia terms, makes it possible to obtain as
an equilibrium equation for the moments:

∫ s

0
(ξ − s)e∧ρA

..

uG(ξ , t)dξ +
∫ s

0
ρJ

..

θθθ(ξ , t)dξ =
∫ s

0
(ξ − s)e∧ fL(ξ , t)dξ +

∫ s

0
cL(ξ , t)dξ

+M0(t)− se∧R0(t)+M(s, t), ∀t

The isolation of the other beam segment ω∗ allows us to find that:

∫ L

s
(ξ − s)e∧ρA

..

uG(ξ , t)dξ +
∫ L

s
ρJ

..

θθθ(ξ , t)dξ =
∫ L

s
(ξ − s)e∧ fL(ξ , t)dξ +

∫ L

s
cL(ξ , t)dξ

+ML(t)+(L− s)e∧RL(t)−M(s, t), ∀t

Equilibrium equation for the moment: local approach

As in the case of the resultant force, instead of writing the equilibrium equation of a beam segment
after cutting at a cross-section of coordinate s, it is possible to establish a local relation verified by
the moment of the inner loads at any point on the neutral axis. Thus, if we take the equilibrium
equation previously established for a segment ω , and introduce the internal loads on the cross-
section of coordinate 0 (R0 =−R(0) and M0 =−M(0)), we obtain:

∫ s

0
(ξ − s)e∧ fL(ξ )dξ +

∫ s

0
cL(ξ )dξ −M(0)+ se∧R(0)+M(s) = 0, ∀s ∈ (0,L)
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and, using the local force equilibrium equation (fL +R′ = 0), we find that:
∫ s

0
(ξ − s)e∧ fL(ξ )dξ =−

∫ s

0
(ξ − s)e∧R′(ξ )dξ

=−
[

(ξ − s)e∧R(ξ )
]s

0
+
∫ s

0
e∧R(ξ )dξ

=−se∧R(0)+
∫ s

0
e∧R(ξ )dξ

which finally allows us to rewrite the moment equilibrium as:
∫ s

0
cL(ξ )dξ +

∫ s

0
e∧R(ξ )dξ +M(s)−M(0) = 0

Since this expression is valid regardless of the coordinate s, it can be interpreted as the integration
of a relation, which is valid regardless of s as well:

∫ s

0

(
cL(ξ )+M′(ξ )+ e∧R(ξ )

)
dξ = 0

where we note •′ = d•
ds

, which finally gives us:

cL(s)+M′(s)+ e∧R(s) = 0, ∀s ∈ (0,L)

which is a first-order differential equation, requiring then to know a boundary condition to be
solved:

• either at s = 0: M(0) =−M0;
• or at s = L: M(L) = ML.

This static equilibrium equation is also valid in the quasi-static framework.

Summary 6.6 — Equilibrium equation for the moment of the internal loads (local ap-

proach). The local moment equilibrium of a beam subjected to volume force densities fV and
surface force densities fS is written, in the static case, as:

cL(s)+M′(s)+ e∧R(s) = 0, ∀s ∈ (0,L)

where cL is the line moment density equivalent to the densities fV and fS:

cL(s) =
∫

Σ(s)
xΣ(χ1,χ2)∧ fV (s,χ1,χ2)dS+

∫

∂Σ(s)
xΣ(χ1,χ2)∧ fS(s,χ1,χ2)dl

This differential equation is solved using a boundary condition to be written at s = 0 or s = L,
namely:

M(0) =−M0, or M(L) = ML

where M0 and ML are the moments (expressed at the centres of the corresponding cross-sections)
of the external actions exerted on the cross-sections of coordinates s = 0 and s = L respectively.

R As for the local force equilibrium equation, it is also possible to use the equations of continuum
mechanics to determine the result established in the case of beams for the local moment equilibrium.
In the dynamic framework, we find in particular that:

cL(s, t)+M′(s, t)+ e∧R(s, t) =
∫

Σ(s)
xΣ(χ1,χ2)∧

(
ρ
..

θθθ(s, t)∧xΣ(χ1,χ2)
)

dS = ρJ
..

θθθ(s, t), ∀s ∈ (0,L), ∀t
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■ Example 6.6 — Moment of the internal loads in a chimney exposed to wind: local approach.
We use Example 6.5 of the chimney subjected to wind, in order to highlight the local approach. Since we had seen
that the line moment density cL was zero at any point on the neutral axis, we then establish the (static) local moment
equilibrium as:

M′(z)+ iz ∧R(z) = 0, ∀z ∈ (0,H)

knowing that it had previously been determined that the resultant force of the internal loads was:

R(z) = ρgπ
(

r2
e − r2

i

)

(z−H)iz −
Kπre

6

(

z3 −H3
)

ix

we then obtain that:

M(z) =
Kπre

6

(
z4

4
−H3z

)

iy +C

where C is a constant vector to be determined using boundary conditions. Again, the easiest way is to use the free
boundary condition at z = H:

M(H) = 0

which leads to the conclusion that:

M(z) =
Kπre

24

(

z4 −4H3z+3H4
)

iy

which corresponds to the result found previously. ■

Besides, it is possible to eliminate the resultant force from the moment equilibrium equation
in order to use only this latter and the different force densities applied to the beam; for this, it is
sufficient to differentiate this equilibrium equation to obtain, in the case of a straight beam:

c′L +M′′+ e∧R′ = 0

and use the local force equilibrium equation (fL +R′ = 0) to establish another moment equilibrium
equation:

c′L(s)+M′′(s)− e∧ fL(s) = 0, ∀s ∈ (0,L)

Finally, it is possible to determine the shear force RΣ from the bending moment, by taking the
vector product of the local moment equilibrium equation by vector e:

e∧ cL + e∧M′+ e∧ (e∧R) = 0

which gives, after development of the vector triple product, and since e∧M′ = e∧M′
Σ:

RΣ(s) = e∧
(
cL(s)+M′

Σ(s)
)
, ∀s ∈ (0,L)

R The generalization to the dynamic framework of these relations is straightforward; indeed, we have:

c′L +M′′+ e∧R′ =
∫

Σ
xΣ ∧ (ρ

..

θθθ′∧xΣ)dS = ρJ
..

θθθ′

where we can use the force equilibrium equation:

ρA
..

uG = fL +R′

to obtain another moment equilibrium equation:

c′L +M′′+ e∧
(
ρA

..

uG − fL
)
=
∫

Σ
xΣ ∧ (ρ

..

θθθ′∧xΣ)dS = ρJ
..

θθθ′

Similarly, the shear force RΣ is expressed, in the dynamic framework, using the bending moment, as:

RΣ = e∧
(

cL +M′−
∫

Σ
xΣ ∧ (ρ

.

θθθ∧xΣ)dS

)

= e∧
(

cL +M′−ρJ
..

θθθ
)
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6.2.4 Internal loads diagrams

In order to give a synthetic account of the internal loads along the beam under study, it is common
practice to plot the non-zero components of the resultant force and of the moment of the internal
loads as functions of the coordinates of the different cross-sections of the beam. For the sake of
clarity, these internal loads diagrams take the form of graphs positioned one above the other, with
the respective coordinates aligned, as shown in Figure 6.15. These diagrams are useful for locating
the extreme values of the internal loads, but also the maximum values of the normal stress or shear
stress within the beam, as will be seen in paragraph 6.3.4.

Figure 6.15: Normal force, shear force and bending moment diagrams: example for a beam
subjected to compression-bending.

R The shear force and bending moment diagrams allow us to verify the expression of the shear force
established above, namely that, in the case where there is no line moment density (cL = 0), the shear
force is expressed (with the exact sign depending on the component) directly as the derivative of the
bending moment with respect to the coordinate along the beam:

Tχ1(s) =−M′
χ2
(s), and Tχ2(s) = M′

χ1
(s), ∀s ∈ (0,L)

Therefore, in the case where the slope of the moment changes abruptly at a specific point of the neutral
axis, the shear force is discontinuous at that same point.

6.3 Beam constitutive relations

Now that we have defined all the ingredients of a beam model, both from the kinematic point of
view and that of internal loads, it remains, as in continuum mechanics, to link these quantities
by one or more constitutive relations. The local relations between the different components of
the stress and infinitesimal strain tensors are then determined, before establishing the relations
regarding the resultant force and moment of the internal loads.

6.3.1 Stress-strain relations

The difficulty here lies in the fact that we are in the presence of a mixed model, in the sense that we
have assumed approximations concerning both the displacement field and the stress tensor:

• the hypothesis of a perfectly rigid cross-section results in obtaining an antiplane infinitesimal
strain tensor, with respect to the plane of the cross-sections;
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• the hypothesis made on the stress tensor is that it is also antiplane with respect to the
cross-section plane.

However, strictly speaking, this is contradictory with the constitutive relation of an isotropic linear
elastic material, determined in Paragraph 4.2, and of Lamé parameters (λ ,µ):

–σ = λ (tr –ε)I+2µ –ε

since, as long as the longitudinal strain εee in the beam is not zero, the plane part –σΣ of the stress
tensor is not zero either:

–σΣ = λεeeI
Σ

where IΣ is the identity tensor in the cross-section plane. For similar reasons, of course, we obtain
the same contradiction with the constitutive relation in compliance, expressed using the Young’s
modulus E and the Poisson’s ratio ν :

–ε =
1+ν

E
–σ− ν

E
(tr –σ)I

as long as the normal stress σee is not zero in the beam.
Finally, we can show, by methods that go beyond the scope of this course, that the best mixed

model consists in assuming an antiplane stress tensor:

–σ = σeee⊗ e+τττΣ ⊗ e+ e⊗τττΣ

and using the compliance constitutive relation to determine the stress-strain relations of the beam
model. In this case, the infinitesimal strain tensor is written as:

–ε =
1+ν

E
(σeee⊗ e+τττΣ ⊗ e+ e⊗τττΣ)−

ν

E
σee I

In addition, the hypothesis of a perfectly rigid cross-section had led, by differentiation, to an
infinitesimal strain tensor of the form:

–ε = εeee⊗ e+
1
2

γγγΣ ⊗ e+
1
2

e⊗γγγΣ

with εee = u′Ge +
〈
θθθ′

Σ ∧xΣ , e
〉

and γγγΣ = u′
GΣ −θθθΣ ∧ e+θ ′

ee∧xΣ if we do not take into account for
the time being Euler-Bernoulli hypothesis.
By identification, it is therefore determined that:

εee =
σee

E
, and γγγΣ =

2(1+ν)

E
τττΣ =

1
µ

τττΣ

or, conversely:

σee = Eεee, and τττΣ =
E

2(1+ν)
γγγΣ = µγγγΣ

The antiplane parts of the infinitesimal strain tensor –ε and stress tensor –σ are therefore connected,
locally and reciprocally, which will allow, in what follows, the characteristics of the beam kinematics
(displacement of the cross-section centre and cross-section rotation) to be linked to the internal
loads (resultant force and moment).
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R The previous model also allows us to determine, using the compliance constitutive relation, that the
plane part of the infinitesimal strain tensor is written as:

–εΣ =− ν

E
σee I

Σ

where IΣ is the identity tensor in the cross-section plane. Thus, we find the Poisson effect usually
observed in the case of a tensile test on an elongated specimen (the transverse strains are εT =−νεee,
as seen in Paragraph 4.2.2), even though this effect had been neglected in the approximation of the
displacement, with the assumption of a perfectly rigid cross-section.

This is not necessarily contradictory, because the error made with this approximate displacement is
amplified when calculating the infinitesimal strain tensor by the fact that the plane part of this latter
depends on partial derivatives with respect to the transverse coordinates χ1 and χ2, which are “small”
when compared to L: one thus expects to obtain a plane part of the infinitesimal strain tensor that is
unrepresentative of reality.

6.3.2 Constitutive relation for the resultant force of the internal loads

Starting from the definition of the resultant force of the internal loads, and using the two stress-strain
relations just determined, we obtain, for a cross-section Σ of given coordinate s, that:

R =
∫

Σ

–σedS =
∫

Σ
(σeee+τττΣ)dS =

∫

Σ
(Eεeee+µγγγΣ)dS =

(∫

Σ
Eεee dS

)

e+
∫

Σ
µγγγΣ dS

Since, by definition,
〈
γγγΣ , e

〉
= 0, we can consider the cases of normal force and shear force

separately:
• the normal force N = Re then satisfies:

Re =
〈

R, e
〉
=
∫

Σ
Eεee dS =

∫

Σ
E
(
u′Ge +

〈
θθθ′

Σ ∧xΣ , e
〉)

dS

Since u′Ge and θθθ′
Σ depend only on s, and since

∫

Σ
xΣ dS = 0 by definition of the cross-section

centre G, the relation is then reduced to:

Re = EAu′Ge

if we assume that the Young’s modulus E is homogeneous in the cross-section of area A;
• the shear force T = RΣ satisfies:

RΣ =
∫

Σ
µ
(
u′

GΣ −θθθΣ ∧ e+θ ′
ee∧xΣ

)
dS

and, since u′
GΣ, θθθΣ and θ ′

e only depend on s, and since
∫

Σ
xΣ dS = 0, the relation is then

reduced to:

RΣ = µA
(
u′

GΣ −θθθΣ ∧ e
)

if we assume that the shear modulus µ is homogeneous in the cross-section of area A.

Summary 6.7 — Constitutive relation for the resultant force in the case of a Timoshenko

beam. For a beam with parameters (E,µ) constant in each cross-section, the resultant force of
the internal loads satisfies (where A is the area of the cross-section):

R(s, t) = Re(s, t)e+RΣ(s, t) = EAu′Ge(s, t)e+µA
(
u′

GΣ(s, t)−θθθΣ(s, t)∧ e
)
, ∀s ∈ [0,L], ∀t
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If we also assume that Euler-Bernoulli hypothesis can be adopted, i.e. that the cross-sections
remain orthogonal to the deformed neutral axis, this means that:

u′
GΣ −θθθΣ ∧ e = 0

as we saw in Paragraph 6.1.3. However, since this is an approximation on which a particular error
is made, it is not possible to state that the integral of this quantity, calculated on the cross-section,
is also zero. We can only conclude that the shear force can no longer be linked to the kinematics
by a constitutive relation: its knowledge can therefore only be possible by using the equilibrium
equations in terms of resultant force and moment. For example, if we know the moment M of
the internal loads at any point, we can use the local moment equilibrium equation, as we saw in
Paragraph 6.2.3, to obtain that:

RΣ(s) = e∧
(
cL(s)+M′(s)

)
, ∀s ∈ (0,L)

Summary 6.8 — Constitutive relation for the resultant force in the case of an Eu-

ler-Bernoulli beam. For a beam with Young’s modulus E constant in each cross-section,
which verifies Euler-Bernoulli hypothesis, the resultant force of the internal loads is such that:

R(s, t) = Re(s, t)e+RΣ(s, t) = EAu′Ge(s, t)e+RΣ(s, t), ∀s ∈ [0,L], ∀t

where A is the area of the cross-section. The shear force RΣ must be determined, in this case,
using the resultant and moment equilibrium equations.

6.3.3 Constitutive relation for the moment of the internal loads

As for the resultant force, we start here from the equation defining the moment of the internal loads,
in which we use the two stress-strain relations for σee and τττΣ, and we then obtain, for a cross-section
Σ of given coordinate s:

M =
∫

Σ
xΣ ∧ ( –σe)dS =

∫

Σ
xΣ ∧ (σeee+τττΣ)dS =

∫

Σ
xΣ ∧ (Eεeee)dS+

∫

Σ
xΣ ∧ (µγγγΣ)dS

with εee = u′Ge +
〈
θθθ′

Σ ∧xΣ , e
〉

and γγγΣ = u′
GΣ −θθθΣ ∧ e+θ ′

ee∧xΣ if we do not take into account for
the time being Euler-Bernoulli hypothesis. Let us analyze separately the two previous integrals:

• the first one is perpendicular to e, and therefore concerns the bending component M f = MΣ

of the moment:
MΣ =

∫

Σ
ExΣ ∧u′GeedS+

∫

Σ
ExΣ ∧ (θθθ′

Σ ∧xΣ)dS

since θθθ′
Σ ∧xΣ is collinear to the axis e; since u′Ge and θθθ′

Σ only depend on the coordinate s, and

since
∫

Σ
xΣ dS = 0, the relation is then reduced to:

MΣ = E
∫

Σ
xΣ ∧ (θθθ′

Σ ∧xΣ)dS = E

(∫

Σ

(
∥xΣ∥2I−xΣ ⊗xΣ

)
dS

)

θθθ′
Σ = EJθθθ′

Σ

if we assume that the Young’s modulus E is homogeneous in the cross-section; we then note
J what is called “area inertia tensor”, on which we will come back a little further;

• the second integral is collinear to the axis e, and therefore concerns the torsion component
Mt = Me of the moment:

Me =
〈

M, e
〉
=
〈
∫

Σ
µxΣ ∧

(
u′

GΣ −θθθΣ ∧ e
)

dS, e
〉
+
〈
∫

Σ
µxΣ ∧

(
θ ′

ee∧xΣ

)
dS, e

〉
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and since u′
GΣ, θθθΣ and θ ′

e only depend on s, and since
∫

Σ
xΣ dS = 0, the relation is then reduced

to:

Me =
〈

µ

∫

Σ
xΣ ∧ (θ ′

ee∧xΣ)dS, e
〉
=
〈

µ

∫

Σ
∥xΣ∥2θ ′

eedS, e
〉
= µIeθ ′

e

with Ie =
∫

Σ
∥xΣ∥2 dS =

〈
Je, e

〉
, called “polar moment of inertia”, and in the case where it is

assumed that the shear modulus µ is uniform in the cross-section Σ.

Summary 6.9 — Constitutive relation for the moment in the case of a Timoshenko beam.

For a beam with parameters (E,µ) constant in each cross-section, the moment of the internal
loads satisfies:

M(s, t) = Me(s, t)e+MΣ(s, t) = µIeθ ′
e(s, t)e+EJθθθ′

Σ(s, t), ∀s ∈ [0,L], ∀t

where J =
∫

Σ

(
∥xΣ∥2I−xΣ ⊗xΣ

)
dS is the area inertia tensor, and Ie =

〈
Je, e

〉
is the polar

moment of inertia of the cross-section, both detailed below.

If we assume, moreover, that Euler-Bernoulli hypothesis can be adopted, i.e. that the cross-
sections remain orthogonal to the deformed neutral axis, we have seen in Paragraph 6.1.3 that this
means that, in this case:

θθθΣ = e∧u′
GΣ

expression that can be introduced in the above relations. Since, in addition, the beam is straight, the
axis e is constant, and we then have:

θθθ′
Σ = e∧u′′

GΣ

Summary 6.10 — Constitutive relation for the moment in the case of an Euler-Bernoulli

beam. For a straight beam with parameters (E,µ) constant in each cross-section, and which
satisfies Euler-Bernoulli hypothesis, the moment of the internal loads is such that:

M(s, t) = Me(s, t)e+MΣ(s, t) = µIeθ ′
e(s, t)e+EJ

(
e∧u′′

GΣ(s, t)
)
, ∀s ∈ [0,L], ∀t

where J =
∫

Σ

(
∥xΣ∥2I−xΣ ⊗xΣ

)
dS is the area inertia tensor, and Ie =

〈
Je, e

〉
is the polar

moment of inertia of the cross-section, detailed below.

R The constitutive relations just established for the resultant force and moment of the internal loads
remain valid in the case of curved beams, provided that the dependence of the vectors e, eχ1 and eχ2 on
the arc length s is taken into account.

Tensor J: properties and practical calculation

Now let us detail a little more the tensor J that was introduced in the previous relations.

Area inertia tensor. We call “area inertia tensor”, associated with the cross-section Σ of
coordinate s, the tensor:

J=
∫

Σ

(
∥xΣ∥2I−xΣ ⊗xΣ

)
dS

The area inertia tensor J thus characterizes how “matter” in this cross-section is spatially
distributed around its centre G; however, here the integral concerns a surface domain and does
not involve density, the components being expressed in m4.
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With respect to this tensor, the e axis of the beam is a “principal axis of inertia”; indeed, we
have:

Je =
∫

Σ

(
∥xΣ∥2I−xΣ ⊗xΣ

)
edS =

∫

Σ
∥xΣ∥2edS = Iee

where Ie =
∫

Σ
∥xΣ∥2 dS is called “polar moment of inertia” of the cross-section Σ.

If we want to calculate the components of this tensor in the Cartesian vector basis (e,eχ1 ,eχ2)
associated with the beam, we have:

J=
∫

Σ

(
(χ2

1 +χ2
2 )I− (χ1eχ1 +χ2eχ2)⊗ (χ1eχ1 +χ2eχ2)

)
dS

where (s,χ1,χ2) are the coordinates of a point of the beam in the vector basis (e,eχ1 ,eχ2): in other
words, x = xG +xΣ = se+χ1eχ1 +χ2eχ2 . Thus, in this basis, we can write:

J=









∫

Σ

(
χ2

1 +χ2
2

)
dS 0 0

0
∫

Σ
χ2

2 dS −
∫

Σ
χ1χ2 dS

0 −
∫

Σ
χ1χ2 dS

∫

Σ
χ2

1 dS









(e,eχ1 ,eχ2 )

Here again, we can see that the axis e of the beam is a principal axis of inertia of the tensor J, of

associated principal moment of inertia Ie =
∫

Σ

(
χ2

1 +χ2
2

)
dS, which we have called polar moment

of inertia of the cross-section.

With regard to the cross-section plane, since the tensor J is symmetrical, we know that it is
possible to find two perpendicular directions eχ1 and eχ2 which are two principal axes of inertia of
J, i.e. which are the two other eigenvectors of the tensor J. In particular, we can show that the axes
of symmetry of the cross-section are principal axes of inertia.

Thus, in the following, we will systematically choose as vectors eχ1 and eχ2 the principal
axes of inertia of the cross-section, and we will note Iχ1 and Iχ2 the principal moments of inertia
respectively associated. The tensor J is therefore diagonal in the vector basis (e,eχ1 ,eχ2):

J = Iee⊗ e+ Iχ1eχ1 ⊗ eχ1 + Iχ2eχ2 ⊗ eχ2

=

(∫

Σ

(
χ2

1 +χ2
2

)
dS

)

e⊗ e+

(∫

Σ
χ2

2 dS

)

eχ1 ⊗ eχ1 +

(∫

Σ
χ2

1 dS

)

eχ2 ⊗ eχ2

where we note that the different principal moments of inertia systematically satisfy the following
property:

Ie = Iχ1 + Iχ2

It is thus possible to project the constitutive relation for the moment in such a way as to link each
of its components to the associated kinematic quantities. Thus, for a Timoshenko beam model, we
obtain:

Me = µIeθ ′
e

Mχ1 = EIχ1θ ′
χ1

Mχ2 = EIχ2θ ′
χ2

and if, in addition, we adopt Euler-Bernoulli hypothesis, we can establish for a straight beam that:

Me = µIeθ ′
e

Mχ1 =−EIχ1u′′Gχ2

Mχ2 = EIχ2u′′Gχ1
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It is thus possible to decouple the different constitutive relations: torsion around e, bending around
eχ1 , and bending around eχ2 .

R As mentioned above, in the case of a static Euler-Bernoulli beam, the shear force is determined from the
moment equilibrium equation:

RΣ = e∧
(
cL +M′)

With the constitutive relation that has just been specified for the bending moment, we can therefore
establish, for a straight beam, that:

RΣ = e∧
(
cL +EJ(e∧u′′′

GΣ)
)

or, in the vector basis (eχ1 ,eχ2) associated with the cross-section:

Tχ1 =−EIχ2 u′′′Gχ1
− cLχ2

Tχ2 =−EIχ1 u′′′Gχ2
+ cLχ1

which can be rewritten in a more compact form:

RΣ =−EPJPu′′′
GΣ + e∧ cL

where P= e⊗ e+ eχ1 ⊗ eχ2 + eχ2 ⊗ eχ1 allows for swapping the axes eχ1 and eχ2 , so that one has:

PJP= Iee⊗ e+ Iχ2 eχ1 ⊗ eχ1 + Iχ1 eχ2 ⊗ eχ2

In the dynamic framework, it is necessary to take into account the inertia terms associated with the

bending rotation, i.e., since
..

θθθΣ = e∧ ..

u′
GΣ:

RΣ =−EPJPu′′′
GΣ + e∧

(
cL −ρJ(e∧ ..

u′
GΣ)
)

■ Example 6.7 — Area inertia tensor for some classical cross-sections. We study here a beam of axis ix,
for which we detail the calculation of the area inertia tensor for various examples of cross-section geometries that we
frequently encounter in practice.

Rectangular cross-section

It is assumed here that the cross-section is rectangular, with dimensions B and H respec-
tively along the axes iy and iz, which form a Cartesian vector basis of the cross-section.
Since these latter are axes of symmetry of the cross-section geometry, the area inertia
tensor is then diagonal in this vector basis, and can be written as:

J= Ixix ⊗ ix + Iyiy ⊗ iy + Iziz ⊗ iz

with:

Iy =
∫

Σ
z2 dS =

∫ B/2

−B/2

∫ H/2

−H/2
z2 dzdy = B

[
z3

3

]H/2

−H/2
=

BH3

12

and:

Iz =
∫

Σ
y2 dS =

∫ H/2

−H/2

∫ B/2

−B/2
y2 dydz = H

[
y3

3

]B/2

−B/2
=

HB3

12

Therefore, the polar moment of inertia of the cross-section is:

Ix = Iy + Iz =
BH3

12
+

HB3

12
=

BH
12

(H2 +B2)

Circular cross-section

We now assume that the cross-section is circular with radius R; we can then use any cylin-
drical coordinate system (G, ir(θ), iθ (θ), ix), centred in the cross-section, to calculate
the area inertia tensor, which here is such that:

J=
∫

Σ

(

∥xΣ∥2I−xΣ ⊗xΣ

)

dS =
∫ 2π

0

∫ R

0

(

∥rir(θ)∥2I− rir(θ)⊗ rir(θ)
)

r dr dθ
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since xΣ = rir(θ). We then obtain:

J= 2π

∫ R

0
r3 dr ix ⊗ ix +

∫ R

0
r3 dr

∫ 2π

0
iθ (θ)⊗ iθ (θ)dθ

If the cylindrical vector basis is such that (ir(θ), iθ (θ), ix) = (Riy,Riz, ix,), where R is the rotation tensor around
axis ix and of angle θ , and with (iy, iz, ix) a Cartesian vector basis, we easily verify that:

∫ 2π

0
iθ (θ)⊗ iθ (θ)dθ = π(iy ⊗ iy + iz ⊗ iz)

which finally implies that:

J= π
R4

2
ix ⊗ ix +π

R4

4
iy ⊗ iy +π

R4

4
iz ⊗ iz

where we find in particular that Ix = Iy + Iz.

Annular cross-section

We now study an annular hollow cross-section, with inner radius Ri and outer radius
Re. A simple way to calculate the associated area inertia tensor is to consider that the
cross-section is obtained as the “difference” bvetween a circular cross-section Σe of
radius Re and a circular cross-section Σi of radius Ri:

J=
∫

Σe\Σi

(

∥xΣ∥2I−xΣ ⊗xΣ

)

dS =
∫

Σe

(

∥xΣ∥2I−xΣ ⊗xΣ

)

dS−
∫

Σi

(

∥xΣ∥2I−xΣ ⊗xΣ

)

dS

which makes it possible to obtain directly:

J= π
R4

e −R4
i

2
ix ⊗ ix +π

R4
e −R4

i

4
iy ⊗ iy +π

R4
e −R4

i

4
iz ⊗ iz

In addition, if the thickness e = Re −Ri is very small when compared to Ri ≈ Re ≈ R, we obtain, up to order one in
e/R:

J= 2πeR3ix ⊗ ix +πeR3iy ⊗ iy +πeR3iz ⊗ iz

“I”-shaped cross-section

We study here a cross-section profile very widespread in the field of construction, namely
an “I-profile” (or “universal profile”), which consists of two horizontal and symmetrical
elements (“flanges”), of width L and thickness e, connected by a vertical element (“web”),
of height H and thickness e. This profile can then be decomposed into three cross-sections
of elementary shapes:

• a rectangular cross-section Σ1 of width L along iy and height H along iz;
• a rectangular cross-section Σ2 of width L along iy and height H −2e along iz;
• a rectangular cross-section Σ3 of thickness e along iy and height H −2e along iz.

The “I-profile” studied here therefore corresponds to Σ = (Σ1 \Σ2)∪Σ3, and the associated area inertia tensor is
then simply:

J= Ixix ⊗ ix + Iyiy ⊗ iy + Iziz ⊗ iz

with:

Iy =
LH3

12
− L(H −2e)3

12
+

e(H −2e)3

12
≈ eH2

12
(H +6L)

if we assume that the thickness e is small when compared to the transverse dimensions H and L, and, similarly:

Iz =
HL3

12
− (H −2e)L3

12
+

(H −2e)e3

12
≈ eL3

6

as well as, finally:

Ix = Iy + Iz ≈
e

12

(

H3 +6H2L+2L3
)
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This cross-section profile is widely used in the case of beams subjected to bending stresses: indeed, a beam
is all the more rigid against such stresses when the associated area moment of inertia is large. Let us compare the
geometry of three cross-sections of different shapes, but with the same moment of inertia Iy:

1. a beam of rectangular cross-section, of dimensions λ1 along iy and 2λ1 along iz;
2. a beam with a hollow rectangular cross-section, of external dimensions λ2 along iy and 2λ2 along iz, and

thickness λ2/10;
3. a beam with a “I-profile” cross-section, with dimensions L = λ3, H = 2λ3 and e = λ3/10.

The table below lists for these three cross-section geometries the dimensions allowing us to obtain a moment
of inertia Iy identical in the three cases (equal to 100 cm4), as well as the associated areas: we can see that the
“I”-shaped cross-section has the minimum area, which means it is the best of the three in terms of bending stiffness /
required mass ratio, which explains why it is very widespread.

Solid cross-section Hollow cross-section “I”-shaped cross-section
Size λ1 = 3.5cm λ2 = 4.2cm λ3 = 4.4cm
Area A1 = 2λ 2

1 = 24.5cm2 A2 =
3
5 λ 2

2 = 10.4cm2 A3 =
2
5 λ 2

3 = 7.7cm2

Moment of inertia Iy1 =
2
3 λ 4

1 = 100cm4 Iy2 =
λ 4

2
3 = 100cm4 Iy3 =

4
15 λ 4

3 = 100cm4

“L”-shaped cross-section

Finally, we study a last cross-section profile, very used in the construction
field, namely a “L-profile” (or “angle profile”) composed of two perpendic-
ular “legs”, of respective directions iy and iz, of length L and thickness e.
The very shape of this profile implies a number of precautions, which are
detailed below.
The first step is to determine the centre of the cross-section; the associated
calculation leads to:

yG =
L2 +Le− e2

4L−2e
= zG

if the origin O of the coordinate system (O, iy, iz) has been placed at the vertex of the angle. If, as is the case in
practice, we assume that e ≪ L, we find the following position:

yG = zG ≈ L
4

The second step is the calculation of the area inertia tensor of the cross-section expressed at point G; this results
in:

J= Ixix ⊗ ix + Iyiy ⊗ iy + Iziz ⊗ iz − Iyz(iy ⊗ iz + iz ⊗ iy)

with:

Iy = Iz =
e

12
(5L2 −5Le+ e2)(L2 −Le+ e2)

2L− e
≈ 5

24
eL3

and:

Ix = Iy + Iz =
e
6
(5L2 −5Le+ e2)(L2 −Le+ e2)

2L− e
≈ 5

12
eL3

and:

Iyz =
e
4

L2(L− e)2

2L− e
≈ eL3

8
when e ≪ L. Thus, the product of inertia Iyz is not zero, which means that the axes iy and iz are not principal axes of
inertia.
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In order to facilitate bending calculations, it is interesting to work with the principal directions of the area inertia
tensor; for this purpose, we can see that the bisector of (iy, iz) is an axis of symmetry of the cross-section geometry,
and, consequently, a principal axis of inertia, noted eχ1 . The second principal direction is then given by eχ2 = ix ∧eχ2 .
In this vector basis, the area inertia tensor is now expressed as a diagonal tensor:

J= Ixix ⊗ ix + Iχ1 eχ1 ⊗ eχ1 + Iχ2 eχ2 ⊗ eχ2

with:

Iχ1 =
e

12
(2L− e)(2L2 −2Le+ e2)≈ eL3

3

and:

Iχ2 =
e

12
2L4 −4L3e+8L2e2 −6Le3 + e4

2L− e
≈ eL3

12

when e ≪ L, and:

Ix = Iχ1 + Iχ2 =
e
6
(5L2 −5Le+ e2)(L2 −Le+ e2)

2L− e
≈ 5

12
eL3

■

R In the case where the cross-section is not circular, we have seen in Example 5.3 (on page 126) that
the cross-sections did not remain planar when subjected to torsion, and that this warping phenomenon
reduced the torsional stiffness of the beam under study. To take this into account, the polar moment of
inertia of the cross-section “without warping” Ie is replaced by its counterpart J defined in Example 5.6
(on page 136) as:

J = Ie +

〈

e,
∫

Σ
xΣ ∧∇∇∇xΣ ϕ dSx

〉

where ϕ(xΣ) is the warping function, obtained by solving on the cross-section:

∆xΣ ϕ = 0

with, as a boundary condition on the contour of the cross-section:

∂ϕ

∂n
=
〈

xΣ , tl
〉

where tl is the vector tangent to the contour.

■ Example 6.8 — Deformation of a chimney subjected to wind. The goal is to determine here the
displacements of the points of the chimney, starting from the knowledge of the resultant force and the moment of the
internal loads along the neutral axis.

The first constitutive relation allows us to link the axial force to the longitudinal displacement of the cross-section
centres, and can be written as:

EAu′Gz(z) = Rz(z) = ρgπ
(
r2

e − r2
i
)
(z−H), ∀z ∈ [0,H]

with A = π
(
r2

e − r2
i

)
, which implies that:

uGz(z) =
ρg
2E

(z2 −2Hz)

since the integration constant is zero using the boundary condition at z = 0:

uGz(0) = 0

the cross section of altitude z = 0 being placed on the ground, assumed fixed and perfectly rigid, with no possibility
of relative movement. The settlement of the chimney (since uGz ≤ 0, ∀z) therefore evolves as a quadratic function of
the altitude.

The second constitutive relation connects the moment of torsion to the angle of twist of the cross-sections, and
is written here as:

µIzθ
′
z(z) = Mz(z) = 0, ∀z ∈ [0,H]
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which leads to the conclusion that:
θz(z) =C = 0

as, since the cross-section of altitude z = 0 is fixed, its rotation is zero. So there is no torsion of the chimney.
The third constitutive relation links, according to Euler-Bernoulli hypothesis, the bending moment to the

transverse displacement of the neutral axis:

EIyiz ∧u′′
GΣ(z) = My(z)iy =

Kπre

24

(

z4 −4H3z+3H4
)

iy

If we take the vector product of this equation with iz, we get:

EIyu′′
GΣ(z) =

Kπre

24

(

z4 −4H3z+3H4
)

ix

which gives, after two successive integrations:

uGΣ(z) =
Kπre

720EIy

(

z6 −20H3z3 +45H4z2
)

ix +C1z+C2

where C1 and C2 are two constant vectors to be determined using the boundary conditions at z = 0: the fact that the
chimney is fixed to the ground with no possibility of relative movement means that the transverse displacement is
zero:

uGΣ(0) = 0, hence C2 = 0

and that the rotation of the cross-section is also equal to zero, which implies, using Euler-Bernoulli hypothesis, that
the derivative of the transverse displacement is zero at z = 0:

u′
GΣ(0) = 0, hence C1 = 0

hence, the neutral axis satisfies the following transverse displacement:

uGΣ(z) =
Kπre

720EIy

(

z6 −20H3z3 +45H4z2
)

ix

Thus, the displacement of the neutral axis is finally:

uG(z) =
Kπre

720EIy

(

z6 −20H3z3 +45H4z2
)

ix +
ρg
2E

(z2 −2Hz)iz

which allows us to determine the displacements of all the points of the beam, since the cross-sections remain
perpendicular to the deformed neutral axis according to Euler-Bernoulli hypothesis, which is expressed as:

θθθΣ(z) = iz ∧u′
GΣ(z) = u′Gx(z)iy =

Kπre

120EIy

(

z5 −10H3z2 +15H4z
)

iy

In conclusion, a point M of coordinates (x,y,z) in the Cartesian vector basis (ix, iy, iz) satisfies the following
displacement:

u(x,y,z) =uG(z)+θθθ(z)∧ (xix + yiy)

=uGx(z)ix +uGz(z)iz − yu′Gx(z)iz

=
Kπre

720EIy

(
z6 −20H3z3 +45H4z2 − y

(

6z5 −60H3z2 +90H4z
))

ix

+
ρg
2E

(z2 −2Hz)iz

■

R The characteristics of the cross-section (area and area inertia tensor) can evolve along the neutral axis
without questioning the validity of the constitutive relations that we established for the resultant force
and the moment of the internal loads. In this case, these characteristics then become functions of the
arc length s.
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6.3.4 Stresses within a cross-section

We have just seen how to link the internal loads to the kinematics of a beam, using the local stress-
strain relations; conversely, it is possible to use these relations in order to make a link between the
local stresses in the cross-section, and the internal loads represented by the resultant force and the
moment of the actions on a cross-section.

Indeed, we can establish using the relations of Paragraph 6.3.1 that the stress vector in the
cross-section Σ of coordinate s can be written as:

–σe = σeee+τττΣ = Eεeee+µγγγΣ

with εee = u′Ge +
〈
θθθ′

Σ ∧xΣ , e
〉

and γγγΣ = u′
GΣ −θθθΣ ∧ e+θ ′

ee∧xΣ if we do not take into account for
the time being Euler-Bernoulli hypothesis.

It is then sufficient to replace each kinematic quantity by the associated components of the
resultant force and moment of the internal loads, using the relations established in Paragraphs 6.3.2
and 6.3.3. Thus, the normal stress σee is such that:

σee = E
(
u′Ge +

〈
θθθ′

Σ ∧xΣ , e
〉)

and we can use in this equation the relations:

Re = EAu′Ge, and MΣ = EJθθθ′
Σ

after inverting them (since, in particular, the area inertia tensor J is invertible), to obtain that:

σee = E

(
Re

EA
+

〈
1
E
J−1MΣ ∧xΣ , e

〉)

which finally leads to:

σee =
Re

A
+
〈

xΣ , e∧J−1MΣ

〉

The normal stress σee is therefore expressed as the sum of two terms:
• the first one, which is constant in the cross-section, results from the tensile (or compression)

axial force N = Re applied along the beam axis;
• the second one, linear along both directions eχ1 and eχ2 of the cross-section, is related to the

two components of the bending moment M f = MΣ around these two axes.
Thus, we see that the normal stress is linear in the cross-section, as shown in Figure 6.16, where
only bending in the vertical plane is taken into account, in addition to tension.

Figure 6.16: Variation of the normal stress σee in a given cross-section: cumulative effects of
tension and bending.
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Similarly, the shear stress τττΣ can be expressed as:

τττΣ = µ
(
u′

GΣ −θθθΣ ∧ e+θ ′
ee∧xΣ

)

and by using in this equation the following relations, once inverted:

RΣ = µA
(
u′

GΣ −θθθΣ ∧ e
)
, and Me = µIeθ ′

e

we finally end up with:

τττΣ =
1
A

RΣ +
Me

Ie
e∧xΣ

Thus, the shear stress is expressed as the conjunction of two effects:
• the first one, associated with bending, corresponds to the transverse shear, homogeneous in

the cross-section, and which reflects the fact that this latter does not remain perpendicular to
the deformed neutral axis;

• the second one, which evolves as a linear function of the distance from the centre of the
cross-section, is associated with torsion, as shown in Figure 6.17.

Figure 6.17: Variation of the shear stress τττΣ associated with torsion, in the case of a circular
cross-section.

Summary 6.11 — Stress vector in a cross-section. In the general case, the stress vector
in a cross-section Σ of coordinate s can be expressed, as a function of the components of the
resultant force and moment of the internal loads:

–σe=σee(s, t)e+τττΣ(s, t)=

(
Re(s, t)

A
+
〈

xΣ , e∧J−1MΣ(s, t)
〉
)

e+
1
A

RΣ(s, t)+
Me(s, t)

Ie
e∧xΣ, ∀t

where A is the cross-section area, and Ie the polar moment of inertia of the cross-section.

R It can be shown that, in the case of bending (without torsion):

∥τττΣ∥
|σee|

= O

(
H
L

)

where H is an order of magnitude of the transverse dimensions of the beam. The shear stress is therefore
all the more negligible when compared to the normal stress that the beam is “thin” and it is therefore
often neglected when adopting Euler-Bernoulli hypothesis.
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■ Example 6.9 — Stresses in a chimney exposed to wind. From the resultant force and moment of the
internal loads determined in Examples 6.4 and 6.6,we can estimate the normal stress at each point of coordinates
(x,y,z) as:

σzz(x,y,z) =
Rz(z)

A
+
〈

xix + yiy , iz ∧J−1MΣ(z)
〉

with:

A = π
(

r2
e − r2

i

)

, and J= π
r4

e − r4
i

4
(ix ⊗ ix + iy ⊗ iy +2iz ⊗ iz)

and:
Rz(z) =−ρgπ

(

r2
e − r2

i

)

(H − z)

MΣ(z) =
Kπre

24

(

z4 −4H3z+3H4
)

iy

which leads to:

σzz(x,y,z) =−ρg(H − z)− Kre

6(r4
e − r4

i )

(

z4 −4H3z+3H4
)

x

Thus, for a cross-section of given altitude z, the axial stress evolves linearly between the two following extreme
values:

σzzmin/max =−ρg(H − z)∓ Kr2
e

6(r4
e − r4

i )

(

z4 −4H3z+3H4
)

and the most loaded cross-section is the one in contact with the ground, at z = 0, for which the maximum stress is, in
absolute value:

|σzz|max = ρgH +
Kr2

e H4

2(r4
e − r4

i )

which is located at x = re. The shear stress is then:

τττΣ(z) =
1
A

RΣ(z) =
Kre

6(r2
e − r2

i )
(H3 − z3)ix

and is negligible when compared to the normal stress when re ≪ H. ■

6.4 Connections between beams

In order to be able to address problems where multiple beams are assembled, a first step is to describe
the connections that can be proposed for these assemblies, particularly in terms of kinematics and
transmissible actions.

6.4.1 Kinematics associated with a connection

Any connection between a beam Ω and another body Ω∗ (a fixed support, a rigid body, or another
beam) allows, for the concerned cross-section Σ of Ω, a certain number of relative movements with
respect to the other body, namely, since the cross-section Σ is perfectly rigid:

• three elementary translational movements of the centre G of the cross-section Σ;
• three elementary rotational movements of the cross-section Σ.

In what follows, we will assume that these elementary movements remain “small”, which allows us
to adopt the framework of the infinitesimal deformation hypothesis, and, in particular, to consider
the initial and current configurations as one.

Thus, it is assumed that the placement vector of the points of the body Ω∗ (or a subpart, such as
one of its cross-sections if it is a beam) verifies:

x∗ = xA +r(p−pA)

where A is a given point of Ω∗, and r= I+ –α∧ is the “small” rotation associated with Ω∗, as defined
in Appendix A.2.6. Usually, we will focus on the displacements of the points of Ω∗ (or a subpart),
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by adopting the infinitesimal deformation hypothesis allowing us to consider the initial and current
configurations as one:

u∗ = uA +ααα∧ (x−xA)

where uA is the displacement of point A, and ααα is the vector of “small” rotation associated with the
antisymmetrical tensor –α∧.

Four types of connections are commonly found in the case of beams: they are detailed in the
following.

Rigid connection

The first connection studied here is a perfectly rigid connection, or a “clamped end”, that does not
allow any relative movement between Ω and Ω∗. Thus, the displacements u of the points of the
(perfectly rigid) cross-section Σ of Ω which is clamped are entirely determined by the expression
of the displacement field of the points of Ω∗:

uG +θθθ∧xΣ = u = u∗ = uA +ααα∧ (xG −xA)+ααα∧xΣ

or, by term-to-term identification:

uG = uA +ααα∧ (xG −xA), and θθθ =ααα

In the particular case where Ω∗ is a perfectly rigid and fixed support, the movements of all the
points of the cross-section Σ are then zero, i.e., more precisely:

uG = 0, and θθθ = 0

If we also adopt Euler-Bernoulli hypothesis, which is equivalent to assuming that u′
GΣ = θθθΣ ∧ e,

this implies that:
u′

GΣ = 0

In the common case where Ω∗ is another beam (where the cross-section Σ∗ is concerned by the
connection), the rigid connection between the two beams implies that the movements of the centres
of the two cross-sections, on the one hand, and the rotations of the two cross-sections, on the other
hand, are the same. Moreover, if an intermediate part does not constitute the rigid connection, this
is equivalent to assuming that the two neutral axes intersect at a point G common to both beams,
implying then, with evident notations to distinguish the expressions relating to the two beams, that:

uG = u∗
G, and θθθ = θθθ∗

This is, of course, a schematization of reality, since such a connection between the two beams can
only be made according to a particular volume domain (a cube, for example, for two perpendicular
beams of square cross-sections of the same transverse dimensions), which has no reason to verify
the kinematic assumptions of beams rigorously. If the dimensions of the cross-sections are small
when compared to the lengths of the beams, this approximation is still considered to be correct.

If, moreover, we adopt for the two beams Euler-Bernoulli hypothesis, which is equivalent to
assuming that θθθΣ = e∧u′

GΣ and θθθ∗
Σ = e∗∧u∗

GΣ∗
′, we can then write that:

θee+ e∧u′
GΣ = θe∗e

∗+ e∗∧u∗
GΣ∗

′

where e and e∗ are the respective axes of the beams Ω and Ω∗.
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■ Example 6.10 — Kinematic conditions for connections in a portal frame. We study here a portal
frame made of three beams Ω1, Ω2 and Ω3 of same length, and oriented respectively along the three directions of a
Cartesian vector basis (iz, ix, iy):

• the coordinate along the beam Ω1 goes from z = 0 at point O to z = L at point A;
• the coordinate along the beam Ω2 goes from x = 0 at point A to x = L at point B;
• the coordinate along the beam Ω3 goes from y = 0 at point B to y = L at point D.

The first beam Ω1 is clamped at the cross-section of centre O on a rigid and fixed support, which allows us to
write at z = 0 that:

u
1

G (0) = 0, and θθθ 1 (0) = 0

In addition, if we adopt Euler-Bernoulli hypothesis, the condition on the rotation at z = 0 becomes:

θ 1
z (0)iz + iz ∧u

1
GΣ

′(0) = 0

The second beam Ω2 is clamped on the previous one at the point A common to the neutral axes of the two
beams, i.e. at z = L for the beam Ω1 and at x = 0 for the beam Ω2:

u
1

G (L) = u
2

G (0), and θθθ 1 (L) = θθθ 2 (0)

In addition, if we adopt Euler-Bernoulli hypothesis, the condition on rotations at z = L and x = 0 becomes:

θ 1
z (L)iz + iz ∧u

1
GΣ

′(L) = θ 2
x (0)ix + ix ∧u

2
GΣ

′(0)

which leads to the following scalar relations:

−u 1
Gy

′(L) = θ 2
x (0)

u 1
Gx

′(L) =−u 2
Gz

′(0)

θ 1
z (L) = u 2

Gy
′(0)

Finally, the third beam Ω3 is clamped on the previous one at the point B common to the neutral axes of the two
beams, i.e. at x = L for the beam Ω2 and at y = 0 for the beam Ω3:

u
2

G (L) = u
3

G (0), and θθθ 2 (L) = θθθ 3 (0)

In addition, if we adopt Euler-Bernoulli hypothesis, the condition on rotations at x = L and y = 0 becomes:

θ 2
x (L)ix + ix ∧u

2
GΣ

′(L) = θ
3

y (0)iy + iy ∧u
3

GΣ
′(0)

leading to scalar relations similar to those written in A. ■
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Spherical joint

A “spherical joint” (or “ball joint”) between Ω and Ω∗ allows no relative translation, and any
relative rotation between the two bodies: it is generally a “pin joint”, such as those visible in
Figure 6.18, and whose clearance allows a rotation of arbitrary axis. Thus, only the displacement of
the centre G of the cross-section Σ of the beam Ω, located at the centre of the spherical joint, is
related to the displacement of the body Ω∗ at the same point:

uG = u∗
G = uA +ααα∧ (xG −xA)

and the beam θθθ of the cross-section Σ remains free.

Figure 6.18: Examples of spherical joints.

In the case of a fixed and perfectly rigid support Ω∗, this means that the centre G of the
cross-section Σ concerned by the linkage is fixed:

uG = 0

In the case where two beams Ω∗ and Ω are connected by a spherical joint, the point G of
intersection between the two neutral axes remains common to both beams, i.e., with evident
notations:

uG = u∗
G

Pin joint

Compared to the previous case, for a “pin joint” (or “hinged joint”) the relative rotation allowed
between Ω and Ω∗ is done around an axis a, as it is visible in Figure 6.19. The axis is assumed to
be linked to Ω∗, which implies that, in addition to the displacement of the cross-section centre, the
two components of the rotation vector of the cross-section Σ of Ω which are perpendicular to a (i.e.
along θθθ−

〈
θθθ, a

〉
a) are also related to the expression of the displacement field of the body Ω∗:

uG = uA +ααα∧ (xG −xA), and θθθ−
〈
θθθ, a

〉
a =ααα−

〈
ααα, a

〉
a

So we can write the displacement of a point of the cross-section Σ as:

u = uG +θθθ∧xΣ = uA +ααα∧ (xG −xA)+
(
ααα+

〈
θθθ−ααα, a

〉
a
)
∧xΣ

which shows that the rotation around the axis a remains free.
If Ω∗ is a fixed and perfectly rigid support (“pinned support” or “hinged support”), in this case,

all components other than the cross-section rotation around the axis a are zero:

uG = 0, and θθθ−
〈
θθθ, a

〉
a = 0
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(a) Realization. (b) Illustration from Henrious bridge.

Figure 6.19: Pin joint (or “pinned support”).

Finally, in the case where the pin joint connects two beams Ω∗ and Ω at the same cross-section
centre G, we can write that:

uG = u∗
G, and θθθ−

〈
θθθ, a

〉
= θθθ∗−

〈
θθθ∗ , a

〉

R In the case where the problem treated is planar, of normal vector the axis of the pin joint, we only speak
of “pinned support” to designate such a connection, which is then symbolized by a triangle; we obtain
for example the following graphic representation for a beam clamped at one end and supported at the
other:

It should also be noted that a spherical joint is equivalent to a pinned support if the problem under
study is planar.

Roller support

This connection, which is found almost exclusively between a beam Ω and a fixed and perfectly
rigid support Ω∗, is illustrated in Figure 6.20: the elastomer “cushion” is deformable (and flexible
enough so that the associated forces can be neglected), and therefore allows any relative rotation.
We find ourselves in the case of a spherical joint, but this time with a possible relative translation
of the centre of the cross-section Σ, allowed by the guiding device along the axis e of the beam Ω.
Thus, in the case of a fixed and perfectly rigid support Ω∗:

uG −
〈

uG , e
〉
e = 0

R In the case where the problem treated is planar, we also speak of roller support to designate such a
connection, which is symbolized by a triangle on two rollers; we obtain for example the following
graphic representation for a beam clamped at one end and with a roller support at the other:
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(a) Realization. (b) Illustration from Briare viaduct.

Figure 6.20: Roller support.

Summary 6.12 — Kinematic parameters of the cross-section of a beam Ω in connection

with a body Ω∗.

Connection (Ω/Ω∗) Case of a fixed support Ω∗ Case of a beam Ω∗

Pinned support (2D) uG = 0 uG = u∗
G (in plane)

Roller support (2D) uG −
〈

uG , e
〉
e = 0 not encountered in reality

Clamped end (rigid c.) uG = 0, and θθθ = 0 uG = u∗
G, and θθθ = θθθ∗

Pin joint (of axis a) uG = 0, θθθ−
〈
θθθ, a

〉
a = 0 uG = u∗

G, θθθ−
〈
θθθ, a

〉
= θθθ∗−

〈
θθθ∗ , a

〉

Roller support uG −
〈

uG , e
〉
e = 0 not encountered in reality

Spherical joint uG = 0 uG = u∗
G

6.4.2 Connection actions

In addition to the kinematic aspect, which we have just seen, a description of the connection
actions between the two bodies Ω and Ω∗ must be proposed. In the following, we assume that the
connections are perfect, i.e. such that:

• the geometries of the contact surfaces are perfect (of canonical forms, and perfectly rigid);
• the contact is made without friction, which means that the forces are only along the normal

vector to the contact surface (contact pressure).
The issue is then to determine, for a given connection, which components of the resultant force
and/or moment are necessarily zero under this assumption of perfect connection. The following
example shows the approach in the case of a spherical joint.

■ Example 6.11 — Transmissible action through a perfect spherical joint. In order to allow a rota-
tion of arbitrary axis between Ω and Ω∗, this connection is obtained by the perfect association of two spherical
surfaces with same centre O and radius R. We then naturally introduce the associated spherical vector basis
(
er(ϑ ,φ),eϑ (ϑ ,φ),eφ (φ)

)
, of coordinates (r,ϑ ,φ).

Since it is assumed that the contact is frictionless, the stress vector at each point of the contact surface Σc is
normal to the contact surface:

–σ(x, t)n(x) =−p(x, t)n(x), ∀t

where n(x) is the outer unit normal vector at a point M of Σc (considering the actions of Ω∗ on Ω); however, the
local distribution of contact pressure p(x, t) is not known, and this is even less accessible because the concerned
cross-section Σ of Ω is perfectly rigid, and therefore the stress field cannot be determined.
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Thus, if we describe a point M of the contact surface by its spherical coordinates:

x = Rer(ϑ ,φ), ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

the stress vector is written as:

–σ(x, t)n(x) = p(ϑ ,φ , t)er(ϑ ,φ)

if the outer unit normal vector is n(x) =−er(ϑ ,φ). Then we can calculate the resultant force and moment in O of
the connection actions from Ω∗ on Ω respectively as:

Rl(t) =
∫

Σc

–σ(x, t)n(x)dSx =
∫ π

0

∫ 2π

0
p(ϑ ,φ , t)er(ϑ ,φ)Rsinϑ dφ dϑ

Ml
xO
(t) =

∫

Σc

x∧ –σ(x, t)n(x)dSx =
∫ π

0

∫ 2π

0
Rer(ϑ ,φ)∧ p(ϑ ,φ , t)er(ϑ ,φ)Rsinϑ dφ dϑ = 0

since xO = 0 in our spherical vector basis.
The perfect connection hypothesis therefore allows us to conclude that the moment (expressed at the centre of

the spherical joint) of the connection actions is zero, regardless of the distribution of the contact pressure between Ω

and Ω∗. On the other hand, nothing can be said for the associated resultant force. ■

Rather than studying the connections one by one, it is possible to adopt a systematic criterion
to determine which components of the resultant force and/or moment are necessarily zero for a
given perfect connection. For this reason, in the case of a connection with a fixed and perfectly
rigid support Ω∗, it can be shown that such a connection must verify that:

〈
R,uG

〉
= 0, and

〈
M,θθθ

〉
= 0

for any arbitrary movement allowed by the connection. This makes it possible to determine which
components of the resultant force or moment of the actions of Ω∗ on Ω can be assumed to be zero.
A similar result is obtained in the case of a connection with another beam Ω∗.

R A justification of the previous result can be made by introducing the work of linkage connection such
that:

T (Ω∗ ↔ Ω) =
∫

Σ

〈

–σn,u−u∗〉dS

where it has been systematically assumed that the connection action of Ω∗ on the beam Ω is directly
exerted on the cross-section Σ of Ω concerned by the connection with Ω∗. Thus, depending on where
the cross-section in question is located, the outer normal vector n is equal either to e or −e.
It is then established that a perfect connection is neither driving nor resistant, and is therefore charac-
terized by a zero work:

T (Ω∗ ↔ Ω) = 0

which allows us to consider, one by one, the connections introduced above. In the case of a connection
with a fixed and perfectly rigid support Ω∗ (u∗ = 0), we can rewrite the work of the connection actions
as:

T (Ω∗ ↔ Ω) =
∫

Σ

〈

–σ(±e),uG +θθθ∧xΣ

〉
dS

=
∫

Σ

〈

–σ(±e),uG
〉

dS+
∫

Σ

〈
xΣ ∧ –σ(±e),θθθ

〉
dS

= ±
〈

R,uG
〉
±
〈

M,θθθ
〉

Thus, for a connection to be perfect, it must therefore satisfy:

〈
R,uG

〉
= 0, and

〈
M,θθθ

〉
= 0

regardless of the movement allowed by the connection. In the case of the spherical joint studied in
Example 6.11, this condition is reduced to

〈
M,θθθ

〉
= 0 since the centre of the concerned cross-section

remains fixed (uG = 0); since the cross-section rotation θθθ is arbitrary, the moment of the connection
action M must be equal to zero to be able to satisfy this condition.
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Summary 6.13 — Connection action of the body Ω∗ on the beam Ω on the cross-section

Σ, for a perfect connection..

Connection (Ω/Ω∗) Resultant force & moment of the connection action of Ω∗ on Ω

Pinned support (2D) arbitrary R (in the plane), and M = 0

Roller support (2D)
〈

R, e
〉
= 0, and M = 0

Clamped end (rigid c.) arbitrary R and M

Pin joint (of axis a) arbitrary R, and
〈

M, a
〉
= 0

Roller support
〈

R, e
〉
= 0, and M = 0

Spherical joint arbitrary R, and M = 0

! The case of a rigid connection has not been mentioned here. In this case, no relative
movement is possible between the two solids, which means that no information is available
on the components of the resultant force and moment of the connection actions.

6.4.3 Complete solution of a beam problem

We saw in the previous paragraph that, for each perfect connection studied, a certain number of
components of the resultant force and/or moment of the connection actions could be assumed to be
equal to zero; the others, on the other hand, are not fixed a priori, and we then speak of “connection
unknowns”. As these latter are involved in the equilibrium equations specified in Paragraphs 6.2.2
and 6.2.3, they must be determined if we wish to be able to evaluate these internal loads in the
different beams.

To do this, we need to compare the number of independent equations with these connection
unknowns. In the static case, it is a question of writing the global equilibrium equations in terms
of resultant force and moment of the entire beam (or each of the entire beams in the case of an
assembly), which allows, at each time, for establishing six scalar relations (three in force, three in
moment) between the different connection unknowns.

Statically determinate beams

If we have as many scalar relations as we have connection unknowns, we call the problem “statically
determinate” (or “isostatic”): it is then possible to determine the resultant force and moment of the
internal loads within each beam of the assembly under study.

■ Example 6.12 — Determination of the internal loads in a portal frame. The study of the portal frame
of Example 6.10 is repeated here in order to calculate, at any point, the resultant force and moment of the internal
loads using the equilibrium equations.

To do this, it is useful first to make a list of the unknowns of the problem, as well as the equations that can be
established:

• each rigid connection is equivalent to six scalar connection unknowns (three components for the resultant
force, and three components for the moment), bringing the total to 18 connection unknowns;

• for each beam, it is possible to write three scalar relations for the global force equilibrium of the entire beam,
and three scalar relations for the global moment equilibrium, which finally allows for obtaining, for the
treated problem, 18 independent scalar equations.

The problem is thus statically determinate: it is possible to determine the resultant force and moment of the internal
loads at any point of the three beams of the portal frame.

We begin with the local approach. Concerning the resultant force, the (static) local equilibrium allows us to
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write for the three beams that:
R 1 ′ = 0, R 2 ′ = 0, and R 3 ′ = 0

The resultant force of the internal loads is then constant on each beam. Besides, we have at the rigid connections:

R 1 (L) = R 2 (0), and R 2 (L) = R 3 (0)

since no external action is applied on them. We also know, by definition of the resultant force, that:

R 3 (L) =−F iz

which implies:

R 1 (z) =−F iz, ∀z ∈ [0,L], R 2 (x) =−F iz, ∀x ∈ [0,L], and R 3 (y) =−F iz, ∀y ∈ [0,L]

which, notably, allows for finding the resultant force of the action of the fixed support on the portal frame as:
R0 =−R 1 (0) = F iz.

Secondly, the local moment equilibrium for each beam allows for writing that:

M 1 ′+ iz ∧R 1 = 0, M 2 ′+ ix ∧R 2 = 0, et M 3 ′+ iy ∧R 3 = 0

Thus, the moment along beam Ω3 verifies:

M 3 (y) = (iy ∧F iz)y+C3

where constant C3 is determined using the loading conditions at the cross-section of coordinate y = L (moment equal
to zero: M 3 (L) = 0), hence, finally:

M 3 (y) =−F(L− y)ix, ∀y ∈ [0,L]

Then the moment along beam Ω2 is such that:

M 2 (x) = (ix ∧F iz)x+C2

hence, expressing the equilibrium of the rigid joint between Ω2 and Ω3 (M 2 (L) = M 3 (0)):

M 2 (x) = F(L− x)iy −FLix, ∀x ∈ [0,L]

Finally, the moment along beam Ω1 verifies:

M 1 (z) = (iz ∧F iz)z+C1 =C1

where C1 is determined using the equilibrium of the rigid joint between Ω1 and Ω2 (M 1 (L) = M 2 (0)):

M 1 (z) = FLiy −FLix, ∀z ∈ [0,L]

which allows for finding the moment (expressed at point O) of the action of the fixed support on the portal frame as:
M0 =−M 1 (0) = FLix −FLiy.

Equivalently, we can apply the global approach. For different locations of the cut within the three beams of the
portal frame, we can write the equilibrium equations of the “downstream” segment.
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Whether we cut at a cross-section of the beam Ω1, Ω2 or Ω3, the equilibrium equation of the “downstream”
segment then allows us to directly establish that:

−R−F iz = 0

and therefore that:

R 1 (z) =−F iz, ∀z ∈ [0,L], R 2 (x) =−F iz, ∀x ∈ [0,L], and R 3 (y) =−F iz, ∀y ∈ [0,L]

We therefore find, by this global reasoning, that the resultant force is constant regardless of the beam studied.
However, whereas the beam Ω1 is subjected to a compressive load (negative axial force), the resultant forces in the
beams Ω2 and Ω3 correspond to shear forces.

In addition, we obtain for the expression of the moment, by considering the cuts according to the beams where
they are located:

• for the beam Ω1:
−M 1 (z)+

(
(L− z)iz +Lix +Liy

)
∧ (−F iz) = 0

at the centre of the cut cross-section, which finally results in:

M 1 (z) = FLiy −FLix, ∀z ∈ [0,L]

which shows that the beam Ω1 is loaded in bending (as well as in tension, here);
• for the beam Ω2, we establish that, at the centre of the cut cross-section, we have:

−M 2 (x)+
(
(L− x)ix +Liy

)
∧ (−F iz) = 0

or, finally:

M 2 (x) = F(L− x)iy −FLix, ∀x ∈ [0,L]

which shows that the beam Ω2 is loaded in bending-torsion;
• finally, for the beam Ω3, we have:

−M 3 (y)+(L− y)iy ∧ (−F iz) = 0

or, directly:

M 3 (y) =−F(L− y)ix, ∀y ∈ [0,L]

which corresponds to a simple bending loading.
■

R If we are interested in the deformation of the portal frame, the approach consists in using the beam
constitutive relations obtained in Paragraph 6.3, and the kinematic connection conditions, detailed in
Example 6.10. In the case of a straight beam, the differential equations corresponding to each loading
(tension, bending, torsion) are then decoupled from each other.

Statically indeterminate problems

If there are more connection unknowns than scalar relations coming from the equilibrium equations
of the entire beams, the problem is said to be “statically indeterminate” (or “hyperstatic”), and the
“hyperstaticity degree” is the difference between these two quantities. In this case, the resultant
force and moment of the internal loads in each beam must be expressed as a function of so-called
“hyperstatic connection unknowns”, which cannot be determined using the equilibrium equations of
the entire beams alone, and whose number is equal to the hyperstaticity degree of the problem.

■ Example 6.13 — Determination of the internal loads in a three-point bending test. We come back
here to the study of a three-point bending test, as presented in Figure 6.2 on page 151: the beam, of axis ix, is placed
at x = 0 and x = L on two supports which, if we assume a plane problem (in the vertical plane associated with (ix, iy)),
can be modelled by pinned supports, as shown in the figure below.
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F

R0y

R0x

RLy

RLx

L
2

L
2

We can therefore identify four connection unknowns, namely the two components along ix and iy of the resultant
force R0, and the same for RL, of the connection actions at each support (since the associated moment is zero):
R0x and R0y at x = 0, and RLx and RLy at x = L. To determine them, it is possible to write three scalar equations
corresponding to the static equilibrium of the entire beam, knowing that the action applied by the upper roller of the
test machine is characterized by a resultant force Rext =−F iy, and a moment Mext equal to zero at the centre of the
cross-section located midway along the beam:

• the two projections in the plane of the (static) global force equilibrium equation of the complete beam:

R0x +RLx = 0

R0y +RLy −F = 0

• the projection along the normal vector iz of the (static) global moment equilibrium equation of the entire
beam, expressed in x = 0:

〈
L
2

ix ∧ (−F iy)+Lix ∧ (RLxix +RLyiy), iz

〉

=−F
L
2
+RLyL = 0

It is then easily determined that:

R0y = RLy =
F
2

while the horizontal components R0x and RLx remain undetermined. The problem treated is therefore statically
indeterminate (hyperstaticity degree of one): the resultant force and the moment of the internal loads along the beam
can only be determined as functions of a hyperstatic connection unknown, to be chosen between R0x and RLx.

Thus, if we apply for example the global approach for the resultant force and the moment, we must first
distinguish two cases:

1. if the beam is cut at a cross-section of abscissa x < L/2, then we obtain, by isolating for example the
“upstream” segment:

R(x)+R0 = 0

as well as, at the centre of the cross-section of abscissa x:

M(x)− xix ∧R0 = 0
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hence, finally, the scalar components of the resultant force R and the moment M such that:

Rx(x) =−R0x, ∀x ∈
[

0,
L
2

)

Ry(x) =−F
2
, ∀x ∈

[

0,
L
2

)

Mz(x) =
F
2

x, ∀x ∈
[

0,
L
2

)

2. if the beam is cut at a cross-section of abscissa x > L/2, the resultant force is, by isolating, for example, the
“downstream” segment:

−R(x)+RL = 0

as well as, at the centre of the cross-section of abscissa x:

−M(x)+(L− x)ix ∧RL = 0

hence, finally, the scalar components of the resultant force R and the moment M such that:

Rx(x) = RLx =−R0x, ∀x ∈
(L

2
,L
]

Ry(x) =
F
2
, ∀x ∈

(L
2
,L
]

Mz(x) =
F
2
(L− x), ∀x ∈

(L
2
,L
]

if R0x is chosen as the hyperstatic unknown.

Of course, we could also have used the local equilibrium equations for the resultant force and moment, taking
into account that the beam should be actually considered as two half beams clamped one with the other at the
cross-section in contact with the mobile part of the test machine. Hence the local force equilibrium equation allows
for determining that:

R′(x) = 0, ∀x ∈
]

0,
L
2

[

∪
]L

2
,L
[

and, then, that the resultant force is constant on each half beam, hence:

R(x) =







−R0 =−R0xix −
F
2

iy, ∀x ∈
]

0,
L
2

[

+RL = RLxix +
F
2

iy, ∀x ∈
]L

2
,L
[

Besides, the local moment equilibrium should be expressed on each half beam separately:






M′(x)+ ix ∧ (−R0xix −
F
2

iy) = 0, ∀x ∈
]

0,
L
2

[

M′(x)+ ix ∧ (RLxix +
F
2

iy) = 0 ∀x ∈
]L

2
,L
[

to find:

M(x) =







F
2

xiz, ∀x ∈
]

0,
L
2

[

−F
2

xiz +
F
2

Liz, ∀x ∈
]L

2
,L
[

using the zero moment conditions at x = 0 and x = L. Therefore, whereas the shear force and the bending moment
are completely determined, the axial force should be expressed using a hyperstatic unknown.

Whatever the approach used, we can see that the resultant force of the internal loads is discontinuous at x = L/2;
this is explained by the force F applied at this point: indeed, if we write the force equilibrium equation for the
infinitesimal cross-section of abscissa L/2, by distinguishing the resultant forces of the actions of the “downstream”
and “upstream” segments, we find that:

R

(
L
2

+)

−R

(
L
2

−)
+Rext = 0
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since Rext =−Fiy is defined as the resultant force of the action of the roller on the beam at x = L/2; in addition,
care has been taken to distinguish:

• the resultant force R
(

L
2
+
)

of the action of the “downstream” segment on the cross-section of abscissa L/2;

• the resultant force −R
(

L
2
−)

of the action of the “upstream” segment on the cross-section of abscissa L/2;

which is equivalent to considering that the beam is in fact composed of two half beams in rigid connection at the
point of application of the resultant force of the roller’s action. As far as the moment is concerned, the equilibrium of
the infinitesimal cross-section of abscissa L/2, expressed at its centre, allows us to establish, with the same notations
and sign convention, that:

M

(
L
2

+)

−M

(
L
2

−)
= 0

since the moment of the roller’s action on the beam is zero at this point. This therefore confirms that the moment of
the internal loads is continuous at x = L/2, and is:

Mz

(
L
2

)

=
FL
4

■

If we wish to determine the hyperstatic unknowns of the problem, it is, in this case, necessary
to calculate the deformation of the beams of the assembly, by introducing the constitutive relations
obtained in Paragraph 6.3; the differential equations obtained are then solved using the conditions
imposed on kinematics, which allows us, by the way, to determine the hyperstatic unknowns.

■ Example 6.14 — Three-point bending test: full solution. Here we continue to solve the problem of the
three-point bending test, started in Example 6.13, for which there was still a hyperstatic connection unknown. As
this latter concerned the axial component of the resultant force, we will use the constitutive relation between the
axial force and the longitudinal displacement, then the associated kinematic boundary conditions to fully determine
the tension-compression solution. So, since we have:

Rx(x) = EAu′Gx(x), ∀x ∈ [0,L]

the longitudinal displacements of the cross-section centres therefore satisfy, on each half beam:

EAu′Gx(x) =







−R0x, ∀x ∈
(

0,
L
2

)

+RLx =−R0x, ∀x ∈
(L

2
,L
)

Knowing that, at the supports, the longitudinal displacement is zero (uGx(0) = 0 = uGx(L)), we arrive at:

EAuGx(x) =







−R0xx, ∀x ∈
(

0,
L
2

)

−R0x(x−L), ∀x ∈
(L

2
,L
)

and, since it is a single beam, the longitudinal displacement must be continuous at x = L/2, i.e.:

−R0x
L
2
= R0x

L
2

which directly implies that the hyperstatic unknown is actually zero:

R0x = 0

As a result, the axial force is zero along the beam, as are the longitudinal displacements of the cross-section centres.
The use of the constitutive relation has thus allowed us to use additional boundary conditions (i. e., those coming
from kinematics constraints) to determine both the hyperstatic unknown and the associated kinematics.

In addition, now that we know the resultant force and moment of the internal loads along the beam, we can
determine the normal stress as:

σxx(x,y) =−y
Mz(x)

Iz
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which is then maximum for x = L/2 and y =−h/2 (where h is the height of the beam):

σxxmax =
FLh
8Iz

If, in addition, we are interested in the bending deformation of the beam, and we adopt Euler-Bernoulli hypothe-
sis, we only need to use the constitutive relations between the bending moment and the transverse displacement:

MΣ(x) = EJ
(
ix ∧u′′

GΣ(x)
)
, ∀x ∈ [0,L]

which gives, along the normal vector to the plane of the problem:

Mz(x) = EIzu
′′
Gy(x), ∀x ∈ [0,L]

The transverse displacement of the neutral axis therefore satisfies, on each half beam:

EIzu
′′
Gy(x) =







F
2

x, ∀x ∈
(

0,
L
2

)

F
2
(L− x), ∀x ∈

(L
2
,L
)

and, knowing that, at the supports, the transverse displacement is zero (uGy(0) = 0 = uGy(L)), we arrive at:

EIzuGy(x) =







F
12

x3 +C1x, ∀x ∈
(

0,
L
2

)

F
12

(3Lx2 − x3 −2L3)+C2(x−L), ∀x ∈
(L

2
,L
)

where C1 and C2 are constants to be determined. Since it is the case of a single beam, the transverse displacement and
cross-section rotation (and therefore the derivative of the transverse displacement taking into account Euler-Bernoulli
hypothesis) must be continuous at x = L/2, i.e.:

FL3

96
+C1

L
2
=−11FL3

96
−C2

L
2
, and

FL2

16
+C1 =

3FL2

16
+C2

which allows us to determine the two constants as follows:

C1 =−FL2

16
, and C2 =−3FL2

16

The deformed neutral axis is therefore:

uGy(x) =







Fx
2EIz

(
x2

6
− L2

8

)

, ∀x ∈
[

0,
L
2

]

− F
2EIz

(
x3

6
− L

2
x2 +

3L2

8
x− L3

24
), ∀x ∈

[L
2
,L
]

and is maximum (in absolute value) at x = L/2, being:

|uGy|max =
FL3

48EIz

which makes it possible, for example, to determine the Young’s modulus of the constitutive material if the force
exerted by the machine and the displacement of the middle of the beam are measured simultaneously.

The graphs below (called “shear and moment diagram”) summarize the evolution of the resultant force and
moment of the internal loads, as well as the deformation of the beam, and make it possible to verify in particular that
the shear force and the bending moment are connected by the local moment equilibrium equation, which here is
written as:

Ry(x) =−M′
z(x), ∀x ∈

(

0,
L
2

)

∪
(L

2
,L
)
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F

L
2

L
2

Ry(x)F
2

0

−F
2

Mz(x)

0

FL
4

− FL3

48EIz

0

uy(x)

■

6.5 Buckling of straight beams

We will study here the phenomenon of buckling, which corresponds to the sudden appearance of a
bending solution in a beam subjected to mechanical actions that we would “classically” associate
with compression. Figure 6.21 illustrates this phenomenon in the case of a railway rail: when the
temperature increases, if the free expansion of the rail is not allowed, it is possible that the resulting
normal stress reaches a level sufficient for buckling to occur.

Figure 6.21: Rail bucking.

This is an unstable phenomenon, which appears as soon as the compression load reaches a
particular value, called the critical load: at that moment, the problem loses its property of uniqueness
in solution, due to geometric nonlinearities. To describe these latter, it is therefore necessary to
modify the local moment equilibrium equation we determined in Paragraph 6.2.3.
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6.5.1 Local moment equilibrium equation in the deformed configuration

We take again for that purpose the case of the isolation of a segment ω of infinitesimal length,
between the coordinates s− and s+ = s−+ ds distinct from the ends of the beam. We had then
determined in Paragraph 6.2.3 the moment equilibrium of this segment, expressed in the centre G−

of the cross-section of coordinate s−, as:

0 =
∫

ω

(
xG(s)−xG−(s−)+xΣ

)
∧ fV dV +

∫

∂ω∩∂Ω

(
xG(s)−xG−(s−)+xΣ

)
∧ fS dS

−M(s−)+
(
xG(s)−xG−(s−)

)
∧R(s+)+M(s+)

Instead of writing that xG(s)−xG−(s−) = (s− s−)e under the infinitesimal deformation hypothesis,
we keep the expression unchanged, so that we obtain, assuming ds → 0:

cL(s)+M′(s)+x′G(s)∧R(s) = 0, ∀s ∈]0,L[

We then assume that it is sufficient to express the placement of the neutral axis as xG = se+uGΣ to
finally obtain that:

cL(s)+M′(s)+
(
e+u′

GΣ(s)
)
∧R(s) = 0, ∀s ∈]0,L[

Thus, even if the initial and deformed configurations remain close to each other, the cross-section
rotations associated with bending are no longer neglected, since we explicitly keep the derivative
u′

GΣ of the transverse displacement, which, in accordance with Euler-Bernoulli hypothesis, is
associated with θθθΣ.

Finally, in order to obtain an equation formally close to that previously obtained in bending, the
equation established above is differentiated, then the local force equilibrium equation is injected to
finally obtain:

c′L(s)+M′′(s)+u′′
GΣ(s)∧R(s)−

(
e+u′

GΣ(s)
)
∧ fL(s) = 0, ∀s ∈]0,L[

This is the only equation that needs to be modified: all the other relations remain within the
infinitesimal deformation hypothesis. We can see that a normal (compressive) load can now be
found in this moment equilibrium equation, through the two terms that have been added, whereas
the tension-compression and bending behaviours were decoupled until now in the case of a straight
beam.

R Even though buckling is a nonlinear phenomenon, with the above assumptions we get a linear equation,
which corresponds to a model known as “linear buckling”. As we will see in the following paragraph,
this theory will allow us to describe buckling in a partial way, by specifying how the phenomenon starts
to establish itself.

6.5.2 Linear buckling

For the sake of illustration, we are now moving into a slightly more specific framework:
• the beam is not subjected to any line force or moment density;
• the beam is only subjected to compression: therefore, all boundary conditions in a direction

perpendicular to the beam’s axis e are equal to zero, and normal stress is constant, being
equal to Re =−P,P > 0;

• we adopt Euler-Bernoulli hypothesis, which makes it possible in particular to link the bending
moment to the transverse displacement directly.
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In this case, the moment equilibrium established in the previous paragraph can be rewritten as:

M′′
Σ(s)+u′′

GΣ(s)∧ (−Pe) = 0, ∀s ∈]0,L[

where MΣ = EJ(e∧u′′
GΣ), which allows us to finally obtain:

EJ
(
e∧u′′′′

GΣ

)
(s)−u′′

GΣ(s)∧Pe = 0, ∀s ∈]0,L[

which implies, by projection on the principal axes of inertia eχ1 and eχ2 , that:

EIχ2u′′′′Gχ1
(s)+Pu′′Gχ1

= 0, ∀s ∈]0,L[

EIχ1u′′′′Gχ2
(s)+Pu′′Gχ2

= 0, ∀s ∈]0,L[

Since these two scalar equations are similar, we will limit ourselves in what follows to the first one.

We can then write the general solution to this equation as:

uGχ1(s) = Acos(ks)+Bsin(ks)+Cs+D, ∀s ∈ [0,L], with k =

√

P
EIχ2

where A, B, C and D are four constants to be determined using four boundary conditions, as in
the case of a “classical” bending problem. Since we assumed that the beam was only subjected to
compression, all the boundary conditions that can be written are homogeneous, and we then have
to solve a problem of the form:







L













A
B
C
D







=







0
0
0
0







where the components of the matrix L are functions of k and L. Since we are looking here for a
non-trivial solution (uGΣ ̸= 0), it is necessary that the matrix L is not invertible, hence:

detL= 0

which allows us to write a scalar equation giving a condition that k must verify in order for the
bending solution to be established. We then find a family of possible values ki, i∈N∗ corresponding
to given loads Pi.

The smallest of these loads is called “critical load” (or “Euler’s critical load’) and corresponds
to the occurrence of the phenomenon. We then determine the displacement associated with this
load, but the expression of this displacement remains indeterminate up to an arbitrary multiplicative
constant, given the singularity of the matrix L: we speak of “buckling mode shape”.

R The problem solved here is in fact a generalized eigenvalue problem, where the eigenvalues are the
different buckling loads, and the eigenmodes are the different buckling modes, whose amplitudes are
therefore not known. This can be explained by the model used, which is a linearized approach that
cannot fully account for the phenomenon, which is non-linear by nature.
The buckling modes therefore give the deformation of the beam at the beginning of buckling, but cannot
describe its geometry in the current configuration: for this, we need a model that is not based on the
infinitesimal deformation hypothesis. However, the model is sufficient to determine the critical load
satisfactorily, which explains why it is widely used for designing beams under compression.
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■ Example 6.15 — Buckling of a beam supported at each end. We consider a straight beam of axis ix
and length L, supported at its two ends, and subjected to a compressive loading at x = L (resultant force −Pix and
moment equal to zero). The buckling problem is then written as:

EIzu
′′′′
Gy(x)+Pu′′Gy(x) = 0, ∀x ∈]0,L[

whose general solution is:

uGy(x) = Acos(kx)+Bsin(kx)+Cx+D, ∀x ∈ [0,L], with k =

√

P
EIz

The four constants then verify the following boundary conditions:
• the transverse displacement is equal to zero at each support:

uGy(0) = 0, and uGy(L) = 0

• the moment is equal to zero at each support:

EIzu
′′
Gy(0) = 0, and EIzu

′′
Gy(L) = 0

which can be rewritten in matrix form as:






1 0 0 1
cos kL sin kL L 1

1 0 0 0
cos kL sin kL 0 0













A
B
C
D







=







0
0
0
0







In order to obtain a non-zero solution, it is necessary that the previous matrix is not invertible, and therefore that its
determinant is zero, which implies that:

0 = detL= sin kL

which is possible for ki = iπ/L, i ∈ N∗ (i ̸= 0 in order to avoid the trivial solution once again), hence:

Pi =
iπ2EIz

L2 , i ∈ N∗

The critical load then corresponds to the first of these values, i.e.:

Pc =
π2EIz

L2

the associated displacement being:

uGy(x) = Bc sin
(πx

L

)

, ∀x ∈ [0,L]

where the constant Bc remains indeterminate. Thus, buckling occurs all the more easily the longer the beam is, and
the lower the cross-section moment of inertia.

P
L

0

uGy(x)

The other buckling modes, associated with critical loads Pi, are then:

uGy(x) = Bi sin

(
iπx
L

)

, ∀x ∈ [0,L]

where each constant Bi remains, once again, indeterminate. ■
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The expression of the critical load is strongly influenced by the boundary conditions at the ends
of the beam, as can be seen in Figure 6.22. Indeed, the scalar equation associated with detL= 0
is modified each time, and leads logically to different expressions of the parameter k and of the
critical load, which are summarized in Figure 6.23: we notice nevertheless that all the expressions
are of similar form:

Pc =
π2EIz

L2
eq

where Leq is an equivalent length, from the point of view of buckling, which depends on the
conditions at the ends of the beam:

• for a beam clamped at its two ends (from the point of view of bending), the equivalent length
is twice the length of the beam;

• for a cantilever beam, the equivalent length is half the length of the beam;
• for a beam clamped at one end and supported at the other, the equivalent length is about 70%

of the length of the beam (the exact value is associated with solving the bucking equation
tan kL = kL).

This shows that the fewer degrees of freedom the beam has at its ends (rotation or even transverse
displacement), the higher the load required for buckling. It is therefore in one’s interest to favour
this type of configuration in order to avoid the phenomenon. Similarly, it is also possible to add
intermediate supports in order to “shorten” the beam, that is, to reduce the value of Leq.

Figure 6.22: Illustration of the influence of boundary conditions on the value of the critical load.

R In the case of beams where the shear stiffness is much lower than the bending stiffness, as in the case of
sandwich beams (where a layer made of a very compliant material is between two layers of a very rigid
material) for example, the previous formulas are no longer valid, as it is necessary to take into account
the influence of shear. In this case, the critical load verifies:

Pc =
π2⟨EIz⟩

L2
eq

1

1+ π2⟨EIz⟩
L2

eq⟨µA⟩

≈ ⟨µA⟩

when L2
eq⟨µA⟩ ≪ ⟨EIz⟩, where ⟨•⟩ stands for the average of • on a cross-section.
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Pc =
π2EI
L2

Pc =
π2EI
(L/2)2

Pc =
π2EI
(2L)2

Pc =
π2EI
(0,7L)2

L

L

L

L

0

uGy(x)

sin(πx
L
)

0

uGy(x)

1− cos(2πx
L
)

0

uGy(x)

1− cos(πx
2L
)

0

uGy(x)

x− L+ L cos( πx
0,7L

)

−0,7L
π

sin( πx
0,7L

)

Figure 6.23: Critical loads and buckling modes for different boundary conditions.

6.6 Summary of important formulas

Kinematics of a (Timoshenko) beam – Summary 6.1 page 156

u = uG +θθθ∧xΣ

–ε =
(
u′Ge +

〈
θθθ′

Σ ∧xΣ , e
〉)

e⊗ e+
(
u′

GΣ −θθθΣ ∧ e
)
⊗S e+(θ ′

ee∧xΣ)⊗S e

Kinematics of a (Euler-Bernoulli) beam – Summary 6.2 page 160

θθθΣ = e∧u′
GΣ

u = uG +
(
θee+ e∧u′

GΣ

)
∧xΣ

–ε =
(
u′Ge −

〈
u′′

GΣ , xΣ

〉)
e⊗ e+(θ ′

ee∧xΣ)⊗S e

Equilibrium equation for the resultant force of the internal loads (global approach) –
Summary 6.3 page 165

∫ s

0
fL dξ +R0 +R(s) = 0

∫ L

s
fL dξ +RL −R(s) = 0

fL =
∫

Σ
fV dS+

∫

∂Σ
fS dl

Equilibrium equation for the resultant force of the internal loads (local approach) –
Summary 6.4 page 168

fL +R′ = 0
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R(0) =
∫

Σ(0)

–σedS =−R0, and R(L) =
∫

Σ(L)

–σedS = RL

Equilibrium equation for the moment of the internal loads (global approach) – Sum-
mary 6.5 page 171

∫ s

0
(ξ − s)e∧ fL dξ +

∫ s

0
cL dξ +M0 − se∧R0 +M(s) = 0

∫ L

s
(ξ − s)e∧ fL dξ +

∫ L

s
cL dξ +ML +(L− s)e∧RL −M(s) = 0

cL =
∫

Σ
xΣ ∧ fV dS+

∫

∂Σ
xΣ ∧ fS dl

Equilibrium equation for the moment of the internal loads (local approach) – Sum-
mary 6.6 page 174

cL +M′+ e∧R = 0

M(0) =
∫

Σ(0)
xΣ ∧ –σedS =−M0, and M(L) =

∫

Σ(L)
xΣ ∧ –σedS = ML

RΣ = e∧
(
cL +M′

)

Constitutive relation for the resultant force in the case of a Timoshenko beam – Sum-
mary 6.7 page 178

R = Ree+RΣ = EAu′Gee+µA
(
u′

GΣ −θθθΣ ∧ e
)

Constitutive relation for the resultant force in the case of an Euler-Bernoulli beam –
Summary 6.8 page 179

R = Ree+RΣ = EAu′Gee−E
(
Iχ2eχ1 ⊗ eχ1 + Iχ1eχ2 ⊗ eχ2

)
u′′′

GΣ + e∧ cL

Rχ1 =−EIχ2u′′′Gχ1
− cLχ2

Rχ2 =−EIχ1u′′′Gχ2
+ cLχ1

Area inertia tensor (principal basis)

J=
∫

Σ

(
∥xΣ∥

2I−xΣ ⊗xΣ

)
dS

J= Iee⊗ e+ Iχ1eχ1 ⊗ eχ1 + Iχ2eχ2 ⊗ eχ2

Iχ1 =
∫

Σ
χ2

2 dS

Iχ2 =
∫

Σ
χ2

1 dS

Ie = Iχ1 + Iχ2 =
∫

Σ

(
χ2

1 +χ2
2

)
dS

Constitutive relation for the moment in the case of a Timoshenko beam – Summary 6.9
page 180

M = Mee+MΣ = µIeθ ′
ee+EJθθθ′

Σ

Me = µIeθ ′
e

Mχ1 = EIχ1θ ′
χ1
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Mχ2 = EIχ2θ ′
χ2

Constitutive relation for the moment in the case of an Euler-Bernoulli beam – Sum-
mary 6.10 page 180

M = Mee+MΣ = µIeθ ′
ee+EJ

(
e∧u′′

GΣ

)

Me = µIeθ ′
e

Mχ1 =−EIχ1u′′Gχ2

Mχ2 = EIχ2u′′Gχ1

Stress vector in a cross-section – Summary 6.11 page 188

–σe = σeee+τττΣ =

(
Re

A
+
〈

xΣ , e∧J−1MΣ

〉
)

e+
1
A

RΣ +
Me

Ie
e∧xΣ

Kinematic parameters of the cross-section of a beam Ω in connection with a body Ω∗ –
Summary 6.12 page 194

Connection (Ω/Ω∗) Case of a fixed support Ω∗ Case of a beam Ω∗

Pinned support (2D) uG = 0 uG = u∗
G (in plane)

Roller support (2D) uG −
〈

uG , e
〉
e = 0 not encountered in reality

Clamped end (rigid c.) uG = 0, and θθθ = 0 uG = u∗
G, and θθθ = θθθ∗

Pin joint (of axis a) uG = 0, θθθ−
〈
θθθ, a

〉
a = 0 uG = u∗

G, θθθ−
〈
θθθ, a

〉
= θθθ∗−

〈
θθθ∗ , a

〉

Roller support uG −
〈

uG , e
〉
e = 0 not encountered in reality

Spherical joint uG = 0 uG = u∗
G

Connection action of the body Ω∗ on the beam Ω on the cross-section Σ, for a perfect

connection. – Summary 6.13 page 196

Connection (Ω/Ω∗) Resultant force and moment of the connection action of Ω∗ on Ω

Pinned support (2D) arbitrary R (in the plane), and M = 0

Roller support (2D)
〈

R, e
〉
= 0, and M = 0

Clamped end (rigid c.) arbitrary R and M

Pin joint (of axis a) arbitrary R, and
〈

M, a
〉
= 0

Roller support
〈

R, e
〉
= 0, and M = 0

Spherical joint arbitrary R, and M = 0



A. Tensor algebra

A.1 Vectors

A.1.1 Definitions and notations

Briefly and generally, the three-dimensional space to which we will refer is an affine space E ,
whose points are the elements. The underlying vector space V then includes the three-dimensional
vectors, which we will write in boldface: v ∈ V .

To keep a unified formalism, we will represent the points of the space E in the form of the
position vectors associated with them: considering the point A ∈ E is equivalent to take into
account the position vector xA ∈ V . Thus, the vectors of the underlying vector space V can also
be represented as differences of points of E : the vector connecting two points A and B of E will
naturally be written as xB −xA, where xA and xB are the position vectors respectively associated
with the points A and B, while the middle point I of the segment [AB] is such that xI =

(
xA +xB

)
/2,

as shown in Figure A.1.

Figure A.1: Points and vectors.

A vector basis of V is a family of three vectors (i1, i2, i3) which are free and span the vector
space V . In other words, any vector v ∈ V can be written in a unique way as a linear combination
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of these three vectors:

v =
3

∑
n=1

vnin

where vn are the components of the vector v in the basis (i1, i2, i3).
As we will see in Paragraph A.1.2, orthonomal bases, i.e. those whose vectors are orthogonal

to each other, and of unit norm, are chosen in a privileged way. In this context, we define the scalar
product between two vectors a and b as the bilinear form

〈
•, •
〉
, symmetric and positive definite,

which is expressed as:

〈
a,b
〉
=

3

∑
n=1

anbn

where an and bn are respectively the components of a and b in the orthonormal basis (i1, i2, i3). We
then define the norm ∥a∥ of a vector a as:

∥a∥=
√
〈

a, a
〉

Finally, we will note the vector product of two vectors a and b as c = a∧b, whose components
cn in an orthonormal basis (i1, i2, i3) verify:

c1 = a2b3 −a3b2, c2 = a3b1 −a1b3, c3 = a1b2 −a2b1

We also recall some classic formulas about the vector product:

a∧ (b∧ c) =
〈

a, c
〉
b−

〈
a,b
〉
c, ∀a, ∀b, ∀c

〈
a∧d,b∧ c

〉
=
〈

a,b
〉〈

d, c
〉
−
〈

a, c
〉〈

b,d
〉
, ∀a, ∀b, ∀c, ∀d

including Jacobi identity formula:

a∧ (b∧ c)+b∧ (c∧a)+ c∧ (a∧b) = 0, ∀a, ∀b, ∀c

and the permutation property of the mixed product:

〈
a,b∧ c

〉
=
〈

b, c∧a
〉
=
〈

c, a∧b
〉
, ∀a, ∀b, ∀c

A.1.2 Classical vector bases

In the following, we present three orthonormal vector bases commonly used in mechanics, because
they are associated with basic geometries that can be found in most of the problems considered.

Cartesian vector basis

A Cartesian vector basis consists of three vectors (i1, i2, i3), of unit norm and orthogonal to each
other, which do not depend on any parameter. It is then associated with the Cartesian coordinates
(x1,x2,x3), so that a point in space satisfies the following position vector:

x = x1i1 + x2i2 + x3i3

as represented in Figure A.2.
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Figure A.2: Cartesian vector basis and associated coordinates.

Cylindrical vector basis

In the case of a geometry in the shape of a cylinder of revolution, a cylindrical vector basis can be
used, which consists of three vectors (ir(θ), iθ (θ), iz), of unit norm and orthogonal to each other,
where:

• the vector iz corresponds to the axis of the cylinder to which the base is associated;
• the other two vectors can be deduced from a given Cartesian vector basis (i1, i2) of the

circular section of the cylinder as:

ir(θ) = cosθ i1 + sinθ i2, ∀θ ∈ [0,2π)

iθ (θ) =−sinθ i1 + cosθ i2, ∀θ ∈ [0,2π)

This vector basis is associated with the cylindrical coordinates (r,θ ,z), so that a point in space
satisfies the following position vector:

x = rir(θ)+ ziz

as represented in Figure A.3.

Figure A.3: Cylindrical vector basis and associated coordinates.

Spherical vector basis

In the case of a spherical geometry, a spherical vector basis can be used, which consists of three
vectors

(
er(ϑ ,φ),eϑ (ϑ ,φ),eφ (φ)

)
, of unit norm and orthogonal to each other, which can be

deduced from a given Cartesian vector basis (i1, i2, i3) as:

er(ϑ ,φ) = sinϑ cosφ i1 + sinϑ sinφ i2 + cosϑ i3, ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

eϑ (ϑ ,φ) = cosϑ cosφ i1 + cosϑ sinφ i2 − sinϑ i3, ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

eφ (φ) =−sinφ i1 + cosφ i2, ∀φ ∈ [0,2π)

This basis is associated with the spherical coordinates (r,ϑ ,φ), so that a point in space satisfies the
following position vector:

x = rer(ϑ ,φ)

as represented in Figure A.4.
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Figure A.4: Spherical vector basis and associated coordinates.

A.2 Second-order tensors

A.2.1 Definitions and properties

A second-order tensor (noted with a blackboard bold letter: A) is a linear application of a vector
space in itself, which, to any vector a, associates the vector b = A(a) of components:

bm =
3

∑
n=1

Amnan

where ap and bp (1 ≤ p ≤ 3) are respectively the components of a and b in a given orthonormal
vector basis (i1, i2, i3), and the components of A are defined as:

Amn =
〈

im ,A(in)
〉
, 1 ≤ m,n ≤ 3

It is therefore a multiplication b = Aa in the sense of the matrix-vector product, which is a notation
that is used preferentially in this textbook. In this context, we note I the identity tensor, which is
such that Ia = a, ∀a, and whose components are therefore written as:

Imn =
〈

im , in
〉
= δmn, 1 ≤ m,n ≤ 3

where δmn stands for the “Kronecker delta”, defined as:

δmn =

{

0 if m ̸= n

1 if m = n

Besides, the (non-commutative) tensor multiplication structure, which corresponds to the
composition of linear applications, is used; thus, the product C= AB is defined by its effect on a
vector a:

b = Ca = (AB)a = A
(
B(a)

)

whose components thus verify:

bm =
3

∑
n=1

Amn

3

∑
p=1

Bnpap

which is equivalent to write that the components of the product C verify:

Cmp =
3

∑
n=1

AmnBnp, 1 ≤ m, p ≤ 3

which is actually the multiplication of two matrices. In the particular case of the identity tensor
(C= I), we call inverse of A the tensor A−1 verifying:

AA−1 = I= A−1A

and therefore corresponding to the inverse application of the one associated with the tensor A.
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Finally, AT stands for the transpose tensor of A, in the sense of the scalar product:

〈
ATa,b

〉
=
〈

a,Ab
〉
, ∀a, ∀b

which allows to find that, in an orthonormal vector basis:

(AT)mn = Anm, 1 ≤ m,n ≤ 3

Besides, when the tensor A is invertible, the inverse of the transpose is defined as the transpose of
the inverse, noted A−T: (AT)−1 = A−T = (A−1)T.

In another orthonormal vector basis (i∗1, i
∗
2, i

∗
3) = (Ri1,Ri2,Ri3), linked to the previous one by

a rotation R of components Rmn in the vector basis (i1, i2, i3) (as defined in Paragraph A.2.6), the
components of A are transformed according to:

A∗
mn =

〈
i∗m ,Ai∗n

〉
=
〈
Rim ,ARin

〉
=
〈

im ,R
TARin

〉
= ∑

1≤p,q≤3

RpmApqRqn, 1 ≤ m,n ≤ 3

which corresponds to the classical formula of change of basis for the components of a matrix.

Tensor product of two vectors

We note a⊗b the tensor product of two vectors a and b, which is a particular tensor with the
following property:

(a⊗b)c =
〈

b, c
〉
a, ∀c

which can be interpreted in terms of matrix calculus as a⊗b = abT (where the transpose of a
“column vector” b is the “row vector” bT). Geometrically, if e is a unit vector, e⊗ e represents the
projection along the direction e, and, therefore, I−e⊗e is interpreted as the projection on the plane
of normal e.

Besides, the following relations should be noted, which are valid regardless of a, b, c, d and A,
and can facilitate calculations:

(a⊗b)T = b⊗a, and (a⊗b)(c⊗d) =
〈

b, c
〉
a⊗d

A(a⊗b) = (Aa)⊗b, ∀A, and (a⊗b)A= a⊗ (ATb)

Finally, it is easy to see that the identity tensor can be written as:

I=
3

∑
n=1

in ⊗ in

where (i1, i2, i3) is a given orthonormal vector basis; this result allows to obtain the expression of a
tensor A with all the tensor products of the vectors of the considered vector basis:

A=
3

∑
n=1

(Ain)⊗ in =
3

∑
m=1

3

∑
n=1

Amnim ⊗ in

where we naturally find the components Amn of A.

Symmetrical and antisymmetrical parts

Any tensor A can be decomposed as the sum of a symmetrical part (A)S and an antisymmetrical
part (A)A:

A= (A)S +(A)A =
1
2
(A+AT)+

1
2
(A−AT)

where it is easily verified that (A)TS = (A)S and (A)TA =−(A)A.
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Moreover, since antisymmetry implies that
〈
(A)Aa, a

〉
= −

〈
(A)Aa, a

〉
, ∀A, ∀a, we deduce

that this scalar product is equal to zero, which allows to associate to the antisymmetrical part of A a
vector w such that we have:

(A)Aa = w∧a, ∀a

which is then the vector of components:

〈
w, in

〉
=

3

∑
m=1

〈
(A)Aim , in ∧ im

〉

Conversely, knowing the vector w, we can build the antisymmetrical tensor ✇∧, of components:

✇
∧
mn =

〈
w, in ∧ im

〉

Similarly, it is also possible to express the vector triple product using the product of antisym-
metrical tensors:

w1 ∧ (w2 ∧a) =✇∧
1✇

∧
2 a, ∀a

or, using Jacobi identity formula presented in Paragraph A.1.1:

(w1 ∧w2)∧a = (✇∧
1✇

∧
2 −✇∧

2✇
∧
1 )a, ∀a

Finally, the previous definitions can naturally be applied to the tensor product of two vectors,
by writing:

a⊗b = a⊗S b+a⊗A b =
1
2
(a⊗b+b⊗a)+

1
2
(a⊗b−b⊗a)

where a⊗S b = (a⊗b)S and a⊗A b = (a⊗b)A respectively stand for the symmetrical and anti-
symmetrical parts of the tensor product a⊗b. The antisymmetrical part therefore corresponds to a
vector associated with the vector product, which is simply w =−(a∧b)/2 since we have:

2(a⊗A b)c =
〈

b, c
〉
a−
〈

a, c
〉
b =−(a∧b)∧ c, ∀c

A.2.2 Scalar product and tensor norm

Trace of a tensor

In order to be able to define a scalar product and a tensor norm, we start by defining the trace of a
tensor, which is a linear form noted tr, which we can define on the space of second-order tensors as:

tr(a⊗b) =
〈

a,b
〉
= tr(b⊗a), ∀a, ∀b

which allows to deduce, by linearity, the classical expression:

trA=
3

∑
n=1

tr
(
A(in ⊗ in)

)
=

3

∑
n=1

tr
(
(Ain)⊗ in

)
=

3

∑
n=1

〈
Ain , in

〉
=

3

∑
n=1

Ann

We then conclude that the trace trA is an “invariant” of the tensor A : its value does not depend on
the vector basis chosen to express the components Amn of the considered tensor.
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Properties

The following product, sometimes called “contracted product” (and noted A : B), is a scalar product
defined in the second-order tensor space:

〈
A,B

〉
= tr

(
ABT

)
=

3

∑
m=1

3

∑
n=1

AmnBmn

considering the components Amn and Bmn of A and B in a given vector basis. Indeed, this form
is clearly bilinear and symmetrical, as well as positive definite, since tr

(
AAT

)
≥ 0 and since, if

tr
(
AAT

)
= 0, then A= 0 necessarily.

This scalar product then allows to define a tensor norm as:

∥A∥=
√

tr
(
AAT

)

and obtain Cauchy-Schwarz inequality:
(

tr
(
ABT

))2
=
〈
A,B

〉2
≤ ∥A∥2 ∥B∥2 = tr

(
AAT

)
tr
(
BBT

)
, ∀A, ∀B

Finally, we can see that a symmetrical tensor and an antisymmetrical tensor are orthogonal to
each other in the sense of this scalar product; indeed, on the one hand, we have:

〈
(A)S ,B

〉
=

〈
A+AT ,B

〉

2
=

〈
A,B+BT

〉

2
=
〈
A, (B)S

〉
, ∀A, ∀B

and, on the other hand:

〈
(A)A ,B

〉
=

〈
A−AT ,B

〉

2
=

〈
A,B−BT

〉

2
=
〈
A, (B)A

〉
, ∀A, ∀B

which implies that:
〈
(A)S , (B)A

〉
= tr

(
(A)S(B)

T

A

)
= 0, ∀A, ∀B

A.2.3 Determinant of a tensor and remarkable relations

Definition and properties

A pragmatic definition of the determinant detA of a tensor A is to consider the mixed product of
the images of three vectors by the linear application associated with A, by writing that:

〈
Aa, (Ab)∧ (Ac)

〉
= detA

〈
a,b∧ c

〉
, ∀a, ∀b, ∀c

It is then easy to show that the determinant can be expressed as a function of the components Amn

of the tensor A in a given orthonormal vector basis (i1, i2, i3):

detA= A11A22A33 +A12A23A31 +A13A21A32 −A31A22A13 −A21A12A33 −A11A32A23

where we recognize Sarrus’ rule of calculation of the determinant of a 3×3 matrix; however, the
determinant detA is an invariant of the tensor A, insofar as its value does not depend on the vector
basis chosen to express the components Amn of the considered tensor.

We can then show that the determinant of a product of tensors is the product of the determinants:

det(AB) = (detA)(detB), ∀A, ∀B

and therefore that the determinant of the inverse of a tensor is the inverse of the determinant:

det(A−1) =
1

detA
,∀A invertible

and that a tensor is invertible if and only if its determinant is not zero.
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Piola’s formula

Using the previous definition, it is possible to write, for three arbitrary vectors and an invertible
tensor A, that:

detA
〈

c, a∧b
〉
=
〈
Ac, (Aa)∧ (Ab)

〉
=
〈

c,AT
(
(Aa)∧ (Ab)

)〉
, ∀c

hence, finally:

(Ab)∧ (Ab) = (detA)A−T(a∧b), ∀a, ∀b

In the case of a rotation tensor (as defined in Paragraph A.2.6), which then satisfies RTR= I and
detR= 1, Piola’s formula allows to establish the distributive property of the rotation tensor over
the vector product:

R(a∧b) = (Ra)∧ (Rb), ∀a, ∀b

A.2.4 Invariants of a tensor

Spectral decomposition of a tensor

The eigenvectors φφφk and eigenvalues λk of a tensor A are intrinsic quantities related to it, and which
satisfy:

Aφφφk = λkφφφk, 1 ≤ k ≤ 3

These quantities do not depend on the vector basis chosen to express the components of the tensor
A.

We can show that, if A is symmetrical, it admits three real eigenvalues, to which we can
associate an orthonormal basis of eigenvectors, which in Mechanics are often called “principal
directions”. The latter then have a particular physical meaning depending on the nature of the
considered tensor A; mathematically, the tensor A is diagonal in the basis of its principal directions.

Invariants

We can show that the eigenvalues of a tensor A are the roots of the characteristic polynomial P(λ )
which is expressed as:

P(λ ) = det(A−λ I) =−λ 3 + i1(A)λ
2 − i2(A)λ + i3(A)

where the scalars ik(A) are the “principal invariants” of the tensor A:

i1(A) = trA

i2(A) =
(trA)2 − tr(A2)

2
i3(A) = detA

hence, as functions of the eigenvalues λk:

i1(A) = λ1 +λ2 +λ3

i2(A) = λ1λ2 +λ2λ3 +λ3λ1

i3(A) = λ1λ2λ3

These quantities are therefore invariant in the sense that they are not affected by a change of basis
when expressing the components of the tensor A.
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A.2.5 Square root of a tensor

Definition and properties

A symmetrical tensor A is said to be positive semi-definite if its eigenvalues are all non-negative;
in this case, by expressing it on the associated basis of its eigenvectors, it is possible to define the
square root U of A as the diagonal tensor in this same basis, whose diagonal components are the
square roots of the eigenvalues of A. Then we have clearly that U2 = A.

By definition, the square root U is also a positive semi-definite and symmetrical tensor; more-
over, if A is positive definite, so is U. Therefore, the square root U is invertible if and only if A is
invertible.

Polar decomposition of a tensor

If A is a tensor such that detA> 0, it admits the following unique decomposition, called “polar
decomposition”:

A= RU= VR

where R is a rotation tensor (as defined in Paragraph A.2.6), and where U and V are the square
roots of ATA and AAT respectively:

U2 = ATA, and V2 = AAT

Indeed, once one has built U, it is easy to verify that AU−1 is an orthogonal tensor, i.e. a rotation
tensor:

(AU−1)T(AU−1) = U−TATAU−1 = U−1U2U−1 = I

and, similarly, with V. Eventually, we easily verify that V= RURT.

A.2.6 Rotation tensors

In what follows, we present a tensor that plays an important role in describing the movement of a
material medium. In particular, it allows to express a movement occurring with no deformation,
such as the one presented in Example 1.3 on page 5.

Definition and properties

A rotation tensor R is an orthogonal tensor, i.e. it satisfies the following property:

RTR= I

Thus, when expressed in a given orthonormal vector basis (i1, i2, i3), the column vectors of the
associated matrix are of unit norm and must be orthogonal to each other:

〈
Rim ,Rin

〉
=
〈
RTRim , in

〉
=
〈

im , in
〉
= δmn, ∀m,n

hence the name of “orthogonal” matrix. These six scalar relations are independent and relate the
nine scalar components of the matrix R, which means that a rotation tensor can be characterized by
three independent scalar quantities.

Besides, the orthogonality property implies that RT =R−1, and, therefore, that we also have the
relation RRT = I. In addition, since RTR= I, we have (detR)2 = (detRT)(detR) = det(RTR) =
detI= 1, hence:

detR= 1

considering that rotations do not change the orientation of space (contrary to reflections whose
determinant is equal to −1).
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Mathematically as well as physically, a rotation tensor is an isometry, because the associated
application is a distance-preserving transformation, as can be seen with an arbitrary vector c:

∥Rc∥2 =
〈
Rc,Rc

〉
=
〈
RTRc, c

〉
=
〈

c, c
〉
= ∥c∥2, ∀c

which explains why it can express the movement of a medium with no deformation.
Besides, the search for eigenvalues λk and eigenvectors φφφk of the tensor R is equivalent to solve:

Rφφφk = λkφφφk, 1 ≤ k ≤ 3

The orthogonality property of R then implies that ∥φφφk∥
2 =

〈
Rφφφk ,Rφφφk

〉
= |λk|

2∥φφφk∥
2, hence:

|λk|= 1

knowing that we also have detR = λ1λ2λ3 = 1. Since these eigenvalues are the roots of the
characteristic polynomial P(λ ) = det(R− λ I) which is of odd degree, at least one of these
eigenvalues is real, and therefore, necessarily, we have:

λ1 = 1,λ2 = eiϕ ,λ3 = e−iϕ = λ̄2

The eigenvector φφφ1 associated with λ1 = 1 is therefore real and can be interpreted geometrically as
the axis of the rotation, since Rφφφ1 = φφφ1: any vector collinear to φφφ1 is unchanged by the rotation R.

Axis and angle of a rotation

We have just seen that it is possible to associate to any rotation tensor R a direction that characterizes
it, that we will note e, which is a unit vector verifying Re = e. Similarly, we will see in the following
how to define the angle of the rotation around the axis e from the tensor R.

Let us consider an arbitrary vector c and its image Rc by the rotation. Since this latter is an
isometry, these two vectors have the same norm, and it is therefore possible to place them as shown
in Figure A.5 : the two ends of these vectors are therefore in the same plane perpendicular to the
axis e, and form in this plane an angle ϕ . We can then decompose Rc as:

Rc =
〈
Rc, e

〉
e+(Rc)⊥ =

〈
c,RTe

〉
e+(Rc)⊥ =

〈
c, e
〉
e+(Rc)⊥

where (Rc)⊥ stands for the component of Rc which is contained in the plane perpendicular to e.
This component can then be expressed using two orthogonal vectors e∧c and e∧(e∧c) constituting
a basis of this particular plane:

(Rc)⊥ = sinϕ e∧ c− cosϕ e∧ (e∧ c)

Figure A.5: Axio-angular parametrization of a rotation of axis e and angle ϕ .
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By expanding the vector triple product as e∧ (e∧ c) =
〈

e, c
〉
e−
〈

e, e
〉
c, and by knowing that

〈
e, e
〉
= 1, we finally get:

Rc =
〈

c, e
〉
e+ sinϕ e∧ c− cosϕ

〈
c, e
〉
e+ cosϕ c

or, by noting ❡
∧ the antisymmetrical tensor, defined in Appendix A.2.1, and defined as ❡∧c =

e∧ c, ∀c, the following expression:

R= cosϕ I+(1− cosϕ)e⊗ e+ sinϕ ❡
∧ =Q(e,ϕ)

With this parametrization, described as “axio-angular”, we find that for a given rotation there are
three independent parameters: two that define the direction of the axis (since e is a unit vector), and
one that is the angle.

It remains to be seen now if the reciprocal is possible, i.e. if we can find e and ϕ from a given
rotation matrix R. For that, we already know that R= 1+2cosϕ , and therefore that:

ϕ =±arccos

(
trR−1

2

)

then, to determine the axis, we can simply write that, if sinϕ ̸= 0:

❡
∧ =

1
2sinϕ

(

R−RT

)

hence the expression of the components of e in a given vector basis. The choice of the sign of ϕ

does not matter, since changing the sign of the angle is the same as changing the sense of the unit
vector of the rotation axis.

In the particular case where sinϕ = 0, i.e. if ϕ ≡ 0 (mod π), since trR= 1+2cosϕ , we get
two possibilities:

• if trR= 3, then ϕ ≡ 0 (mod 2π): the rotation is actually the identity tensor I, and e is then
arbitrary;

• if trR=−1, then ϕ ≡ π (mod 2π): the rotation is actually R=−I+2e⊗ e and e comes
directly from the relation e⊗ e = (I+R)/2.

Apart from the latter cases, for which the singularity can still be removed, the axio-angular
parametrization of a rotation is therefore invertible.

Case of an infinitesimal rotation

In the case where the rotation angle ϕ is very small when compared to 1, we can simplify the
expression of the axio-angular parametrization of the infinitesimal rotation as:

R= I+ϕ ❡
∧+O(ϕ2)

If this rotation occurs to express the position of a point, this implies that the associated movement
u = x−p satisfies:

u = (R− I)(p−pO) = ϕe∧ (p−pO)

where O is a point on the axis of rotation. This expression is used in continuum mechanics to
specify rotation boundary conditions in the framework of the infinitesimal deformation hypothesis.
It is also used in beam mechanics, in Paragraph 6.1.2, to express the approximate kinematics of a
beam.
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A.3 Fourth-order tensors

A.3.1 Definition and properties

A fourth-order tensor TTT is a linear application of the second-order tensor space in itself, which, to
any tensor A associates the tensor B=TTT(A) of components:

Bmn =
3

∑
p=1

3

∑
q=1

TmnpqApq, 1 ≤ m,n ≤ 3

where Apq and Bmn (1 ≤ m,n, p,q ≤ 3) are the respective components of A and B in a given
orthonormal vector basis (i1, i2, i3), and the components of TTT can be expressed as:

Tmnpq = tr
((

TTT(ip ⊗ iq)
)
(im ⊗ in)

)

It is therefore a multiplication B=TTTA in the sense of a matrix-vector product if we adopt Voigt
notation, defined in Paragraph 4.1.3, in the case of symmetrical tensors A and B, and of a tensor TTT
satisfying the major symmetry property:











B̃1 = B11

B̃2 = B22

B̃3 = B33

B̃4 = B23

B̃5 = B13

B̃6 = B12











=











T̃11 T̃12 T̃13 T̃14 T̃15 T̃16

T̃12 T̃22 T̃23 T̃24 T̃25 T̃26

T̃13 T̃23 T̃33 T̃34 T̃35 T̃36

T̃14 T̃24 T̃34 T̃44 T̃45 T̃46

T̃15 T̃25 T̃35 T̃45 T̃55 T̃56

T̃16 T̃26 T̃36 T̃46 T̃56 T̃66





















Ã1 = A11

Ã2 = A22

Ã3 = A33

Ã4 = 2A23

Ã5 = 2A13

Ã6 = 2A12











Besides, we can also define the tensor product A⊗B of two second-order tensors A and B,
which is a fourth-order tensor such that:

(A⊗B)C=
〈
B,C

〉
A= tr

(
BCT

)
A, ∀C

of components (A⊗B)mnpq = AmnBpq in an orthonormal vector basis (i1, i2, i3).

A.3.2 Particular forms

In the case of fourth-order tensors acting in symmetrical tensor spaces, and having the major sym-
metry property, Voigt notation used above shows that 21 out of the 36 components are independent.
It is possible to reduce this number if the fourth-order tensor is invariant when specific symmetry
transformations are applied to it.

Orthotropy

If the tensor TTT is invariant to three reflection symmetries of mutual orthogonal planes, whose
normal vectors are assumed oriented along the three vectors of a basis (i1, i2, i3), some components
of TTT vanish, and this latter can then be written, using Voigt notation, as:











B̃1 = B11

B̃2 = B22

B̃3 = B33

B̃4 = B23

B̃5 = B13

B̃6 = B12











=











T̃11 T̃12 T̃13 0 0 0
T̃12 T̃22 T̃23 0 0 0
T̃13 T̃23 T̃33 0 0 0
0 0 0 T̃44 0 0
0 0 0 0 T̃55 0
0 0 0 0 0 T̃66





















Ã1 = A11

Ã2 = A22

Ã3 = A33

Ã4 = 2A23

Ã5 = 2A13

Ã6 = 2A12











hence 9 independent components.
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Cubic symmetry

If, as in the previous case, the tensor TTT is invariant to three reflection symmetries of mutual
orthogonal planes, but, in addition, the directions of the three normal vectors to these planes are
equivalent, then this tensor can be written, using Voigt notation, as:











B̃1 = B11

B̃2 = B22

B̃3 = B33

B̃4 = B23

B̃5 = B13

B̃6 = B12











=











T̃11 T̃12 T̃12 0 0 0
T̃12 T̃11 T̃12 0 0 0
T̃12 T̃12 T̃11 0 0 0
0 0 0 T̃44 0 0
0 0 0 0 T̃44 0
0 0 0 0 0 T̃44





















Ã1 = A11

Ã2 = A22

Ã3 = A33

Ã4 = 2A23

Ã5 = 2A13

Ã6 = 2A12











hence 3 independent components.

Transverse isotropy

If the tensor TTT is invariant by rotation around a fixed axis i3, it can be written, using Voigt notation,
as: 









B̃1 = B11

B̃2 = B22

B̃3 = B33

B̃4 = B23

B̃5 = B13

B̃6 = B12











=











T̃11 T̃12 T̃13 0 0 0
T̃12 T̃11 T̃13 0 0 0
T̃13 T̃13 T̃11 0 0 0
0 0 0 T̃44 0 0
0 0 0 0 T̃44 0
0 0 0 0 0 T̃11 − T̃12





















Ã1 = A11

Ã2 = A22

Ã3 = A33

Ã4 = 2A23

Ã5 = 2A13

Ã6 = 2A12











hence 5 independent components.

Isotropy

If the tensor TTT is invariant by rotation, whatever it is, it can be written simply, using Voigt notation,
as:











B̃1 = B11

B̃2 = B22

B̃3 = B33

B̃4 = B23

B̃5 = B13

B̃6 = B12











=











T̃11 T̃12 T̃12 0 0 0
T̃12 T̃11 T̃12 0 0 0
T̃12 T̃12 T̃11 0 0 0
0 0 0 T̃11 − T̃12 0 0
0 0 0 0 T̃11 − T̃12 0
0 0 0 0 0 T̃11 − T̃12





















Ã1 = A11

Ã2 = A22

Ã3 = A33

Ã4 = 2A23

Ã5 = 2A13

Ã6 = 2A12











hence 2 independent components. This result corresponds actually to the Rivlin-Ericksen theorem,
in the linear case, of which the following statement is recalled.

Rivlin-Ericksen theorem (linear case). A fourth-order tensor TTT, acting from the symmetrical
second-order tensor space in itself, is said to be isotropic if and only if it satisfies:

R(TTTA)RT =TTT(RART), ∀A symmetrical,∀R such that RRT = I

Then there are two scalars α and β such that the tensor TTT can be expressed as:

TTTA= αA+β (trA)I, ∀A symmetrical

A proof of this theorem is detailed below.
Let A be a symmetrical second-order tensor: we can then write this tensor using the basis of

the associated eigenvectors (φφφ1,φφφ2,φφφ3):

A=
3

∑
k=1

λkφφφk ⊗φφφk
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where (λ1,λ2,λ3) are the associated eigenvalues. Besides, for any tensor B, we have:

B(φφφk ⊗φφφk)B
T = (Bφφφk)⊗ (Bφφφk)

Using this relation for B= Sk = I−2φφφk ⊗φφφk (which then corresponds to the reflection symmetry
with respect to the plane of normal vector φφφk), we obtain that:

Sk(φφφk ⊗φφφk)S
T

k = (Skφφφk)⊗ (Sφφφk) = (−φφφk)⊗ (−φφφk) = φφφk ⊗φφφk

which implies that:
SkAS

T

k = A

Let now TTT be a fourth-order isotropic tensor, acting from the symmetrical second-order tensor
space in itself; since the tensor Sk is orthogonal (SkS

T

k = I), the tensor TTT then satisfies:

Sk(TTTA)S
T

k =TTT(SkAS
T

k ) =TTTA

which allows to establish that:

Sk
(
(TTTA)φφφk

)
= (TTTA)Skφφφk =−(TTTA)φφφk

which means that the symmetric of (TTTA)φφφk relatively to the plane of normal vector φφφk is equal to
its opposite, which can only happen if (TTTA)φφφk is collinear to φφφk:

(
(TTTA)φφφk

)
∧φφφk = 0

which is equivalent to say that φφφk is an eigenvector of TTTA.
Let e be an arbitraty unit vector; the tensor e⊗e is symmetrical, and then admits as eigenvectors

e (of associated eigenvalue 1), and any vector perpendicular to e (of associated eigenvalue 0). We
then know, from the above, that TTT(e⊗e) has the same eigenvectors as e⊗e, and can then be written
as:

TTT(e⊗ e) = α(e)(e⊗ e)+β (e)I

where α and β are scalar functions of e.
Let now e and f be two arbitrary unit vectors; then we can find an orthogonal tensor R such that

Re = f, hence, if TTT is isotropic:

TTT(f⊗ f) =TTT
(
(Re)⊗ (Re)

)
=TTT

(
R(e⊗ e)RT

)
= R

(
TTT(e⊗ e)

)
RT

and by introducing the form according to the functions α and β , we end up with:
(
α(e)−α(f)

)
(f⊗ f)+

(
β (e)−β (f)

)
I= 0

which implies, necessarily, that:

α(e) = α(f), and β (e) = β (f), ∀e, ∀f

or, in other words, that the scalars α and β are constant; so we have:

TTT(e⊗ e) = α(e⊗ e)+β I

By writing A again in the basis of its eigenvectors, we finally establish, using the linearity of TTT,
that:

TTTA=
3

∑
k=1

λkTTT(φφφk ⊗φφφk) = α

(
3

∑
k=1

λkφφφk ⊗φφφk

)

+β

(
3

∑
k=1

λk

)

I= αA+β (trA)I

i.e. the sought result.



B. Tensor analysis

B.1 Differentiation

B.1.1 Conventional space operators

In the following, we wish to characterize, through different operators, the spatial evolution of scalar
or vector fields; x will designate the placement vector of the current point.

Gradient

We define the spatial gradient of a scalar function φ(x) as the vector noted ∇∇∇xφ such that:

〈
∇∇∇xφ(x), c

〉
= lim

α→0

φ(x+αc)−φ(x)

α
, ∀x

where c is an arbitrary constant vector; by choosing a Cartesian vector basis (i1, i2, i3) of associated
coordinates (x1,x2,x3), the components of the gradient are then determined as:

〈
∇∇∇xφ(x), in

〉
= lim

α→0

φ(x+αin)−φ(x)

α
=

∂φ

∂xn
(x), ∀x, 1 ≤ n ≤ 3

In the case of a vector field v(x), the gradient Dxv can be defined in a similar way as the linear
application which, to any constant vector c, associates the vector (Dxv)c such that:

(
Dxv(x)

)
c = lim

α→0

v(x+αc)−v(x)

α
, ∀x

The components of this tensor, which is also called the “Jacobian matrix”, are obtained as:

(Dxv)mn =
〈
(Dxv)in , im

〉
=

〈
∂v

∂xn
, im

〉

=
∂vm

∂xn
, 1 ≤ m,n ≤ 3

(where vm are the components of v in the Cartesian vector basis (i1, i2, i3)), which allows the
gradient tensor to be expressed in intrinsic form, using tensor products, as:

Dxv =
3

∑
n=1

∂v

∂xn
⊗ in
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Divergence

We define the divergence of a vector field v(x) as the trace of the gradient tensor of this field:

divx v = tr(Dxv) =
3

∑
n=1

〈
∂v

∂xn
, in

〉

For a tensor A(x), we define the divergence using the divergence of a vector by posing that:

〈
divdivdivxA, c

〉
= divx(A

Tc)

for c constant and arbitrary, which allows to get, by choosing a Cartesian vector basis (i1, i2, i3) of
associated coordinates (x1,x2,x3):

〈
divdivdivxA, im

〉
= divx(A

Tim) =
3

∑
n=1

∂Amn

∂xn
, 1 ≤ m ≤ 3

which are actually the divergences, expressed in Cartesian coordinates, of the row vectors of A.

Besides, we can show the following relation, very useful to simplify the calculations:

divdivdivx(v⊗w) = (Dxv)w+(divx w)v

(where v(x) and w(x) are two vector fields), as well as the following two formulas:

divdivdivx(φA) = φdivdivdivxA+A∇∇∇xφ

divx(A
Tv) =

〈
divdivdivxA, v

〉
+ tr

(
A(Dxv)T

)

where φ(x) is a scalar field and v(x) is a vector field.

Curl

The (rotational) curl of a vector field v(x) is defined as:

(rotxv)∧ c =
(
Dxv− (Dxv)T

)
c

where c is an arbitrary constant vector; it is thus the vector corresponding to the double of the
antisymmetrical part of the gradient tensor of the vector field, introduced in Paragraph A.2.1; by
choosing a Cartesian vector basis (i1, i2, i3) of associated coordinates (x1,x2,x3), we can determine
the components of rotxv.

We also define the curl of a second-order tensor A(x) using the curl of a vector, by writing that:

(r♦txA)c = rotx

(
ATc

)

for any constant vector c; we then have in particular:

(r♦txA)in = rotx

(
ATin

)
, 1 ≤ n ≤ 3

which shows that the columns of the tensor in the vector basis correspond to the curls of the row
vectors of A.
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Laplacian

We define the Laplacian of a vector field v(x) as follows:

∆∆∆xv = divdivdivx(Dxv)

which, in terms of components in a Cartesian vector basis (i1, i2, i3) of associated coordinates
(x1,x2,x3), means:

〈
∆∆∆xv, im

〉
=

3

∑
n=1

∂ 2

∂x2
n

〈
v, im

〉
= ∆x

〈
v, im

〉
, 1 ≤ m ≤ 3

where ∆x is the scalar Laplacian, defined as:

∆x f (x) =
3

∑
n=1

∂ 2 f
∂x2

n
(x)

B.1.2 Useful formulas

First of all, we note two fundamental properties:

rotx(∇∇∇xφ) = 0

divx(rotxv) = 0

where, as in what follows, v(x) is a vector field, and φ(x) is a scalar field.

Vector relations

We assume in the following relations that c is a constant vector:

∇∇∇x

〈
v, c
〉
= (Dxv)Tc

divx(v∧ c) =
〈

rotxv, c
〉

rotx(v∧ c) = (Dxv)c− (divx v)c

Dx(φc) = c⊗∇∇∇xφ

divx(φc) =
〈
∇∇∇xφ , c

〉

rotx(φc) = (∇∇∇xφ)∧ c

Tensor relations

In the following, A(x) is an arbitrary second-order tensor, while v(x) is still a vector field:

divdivdivx(Dxv) =∆∆∆xv =∇∇∇x(divx v)− rotx(rotxv)

divdivdivx

(
(Dxv)T

)
=∇∇∇x(divx v)

r♦tx(Dxv) = 0

r♦tx

(
(Dxv)T

)
= Dx(rotxv)

divdivdivx(r♦txA) = rotx

(
divdivdivx(A

T)
)

divdivdivx

(
(r♦txA)

T
)
= 0

Finally, if A is a symmetrical second-order tensor, we have the following property:

tr(r♦txA) = 0



228 Chapter B. Tensor analysis

B.1.3 Time differentiation

General principle

In order to define the time derivative of a vector, we can use the “basic” definition of a derivative, i.e.
the expression of the vector variation between two close times (when the time difference approaches
zero):

.

c(t) = lim
∆t→0

1
∆t

(
c(t +∆t)− c(t)

)
, ∀c, ∀t

formula which can be interpreted using the components (c1,c2,c3) of vector c in a given fixed
vector basis (i1, i2, i3):

.

c(t) =
.

c1(t)i1 +
.

c2(t)i2 +
.

c3(t)i3

Similarly, the time derivative of a tensor can be expressed as:

.

A(t) = lim
∆t→0

1
∆t

(
A(t +∆t)−A(t)

)
, ∀c, ∀t

which can also be interpreted using the components Ai j of tensor A in a given fixed vector basis
(i1, i2, i3):

.

A(t) =
3

∑
m=1

3

∑
n=1

.

Amn(t)im ⊗ in

This has the practical consequence that all the classical properties of differentiation can be
verified:

.

︷ ︷
(
c1(t)+ c2(t)

)
=

.

c1(t)+
.

c2(t), ∀c1, ∀c2, ∀t
.

︷ ︷
(
A(t)+B(t)

)
=

.

A(t)+
.

B(t), ∀A, ∀B, ∀t
.

︷ ︷
〈

c1(t), c2(t)
〉
=
〈
.

c1(t), c2(t)
〉
+
〈

c1(t),
.

c2(t)
〉
, ∀c1, ∀c2, ∀t

.

︷ ︷
(
c1(t)∧ c2(t)

)
=

.

c1(t)∧ c2(t)+ c1(t)∧
.

c2(t), ∀c1, ∀c2, ∀t
.

︷ ︷
(
A(t)B(t)

)
=

.

A(t)B(t)+A(t)
.

B(t), ∀A, ∀B, ∀t
.

︷ ︷
(
λ (t)c(t)

)
=

.

λ (t)c(t)+λ (t)
.

c(t), ∀λ , ∀c, ∀t
.

︷ ︷
(
λ (t)A(t)

)
=

.

λ (t)A(t)+λ (t)
.

A(t), ∀λ , ∀A, ∀t

The penultimate relation, assuming that c is a unit vector, shows how the derivative of a vector
whose norm changes over time can be calculated. In addition, it is also necessary to express the
direction variation of a vector in terms of time derivative; this is what is proposed in the following.

Angular velocity vector

By deriving with respect to time the orthogonality property of the rotation tensor (RRT = I),
established in Paragraph A.2.6, we obtain:

.

RRT+R
.

RT = 0

or, by posing –ΩR =
.

RRT:

–ΩR =
.

RRT =−
(

.

RRT

)T

=− –ΩT

R
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which means that –ΩR is an antisymmetrical tensor. This constitutes what is called, in fluid
mechanics, the “spin tensor”; while this latter may then depend on the point considered, the tensor

–ΩR associated with a rigid body movement is the same throughout the domain of the considered
solid.

In addition, since –ΩR is antisymmetrical, it is possible, as mentioned in Paragraph A.2.1, to
associate a vector, noted ωωωR, called “angular velocity vector”, which therefore verifies:

ωωωR∧ c = ω∧
Rc = –ΩRc =

.

RRTc, ∀c

Thus, if, in a given vector basis (i1, i2, i3), the matrix is written as:

–ΩR =





0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0





the associated angular velocity vector ωωωR has as components in this same basis:

(ω1 =−Ω23,ω2 = Ω13,ω3 =−Ω12)

This makes it possible to express the time derivative of a vector: for this, let us consider a vector
that can be expressed as c(t) = R(t)c0, where c0 is assumed to be fixed. We can then write that:

.

c =
.

Rc0 = –ΩRRc0 = –ΩRc =ωωωR∧ c

B.2 Transformations of integrals

B.2.1 Substitutions

The purpose of this paragraph is to make the substitution x = f(p, t) when tracking a set of particles
as they move, in order to estimate a specific quantity obtained by integration.

Volume integration

The volume of a parallelepiped built from three vectors a, b and c can be expressed using the mixed
product:

V (a,b,c) =
∣
∣
〈

a,b∧ c
〉∣
∣

Thus, if we consider an elemental volume in the vicinity of a point p, represented by a parallelepiped
constructed from three elemental vectors dp1, dp2 and dp3, which become dx1, dx2 and dx3 at time
t, the associated volume can be defined as:

∣
∣
〈

dx1 , dx2 ∧dx3
〉∣
∣=
∣
∣
〈
Fdp1 , (Fdp2)∧ (Fdp3)

〉∣
∣

where F is the deformation gradient tensor. Using the result of Appendix A.2.3, we then establish
that :

∣
∣
〈

dx1 , dx2 ∧dx3
〉∣
∣=
∣
∣detF

〈
dp1 , dp2 ∧dx3

〉∣
∣= detF

∣
∣
〈

dp1 , dp2 ∧dp3
〉∣
∣

because detF> 0.
This result then allows to make the substitution x = f(p, t) in a volume integral, by writing that:

∫

Ωt

φ(x)dVx =
∫

Ω0

φ
(
f(p, t)

)
detF(p, t)dVp

where φ is a given scalar field.
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Surface Integral

The area of a parallelogram built from two vectors a and b can be expressed simply as:

A (a,b) = ∥a∧b∥

Thus, if we consider an elemental surface in the vicinity of a point p, and represented by a
parallelogram constructed from two elemental vectors dp1 and dp2, which become dx1 and dx2 at
time t, the associated area can then be expressed as:

∥dx1 ∧dx2∥= ∥(Fdp1)∧ (Fdp2)∥

with F the deformation gradient tensor. Using Piola’s formula established in Appendix A.2.3, we
arrive at:

∥dx1 ∧dx2∥=
∥
∥
∥(detF)F−T(dp1 ∧dp2)

∥
∥
∥= detF

∥
∥
∥F

−T(dp1 ∧dp2)
∥
∥
∥

because detF > 0. In addition, by posing dp1 ∧dp2 = dS0np, where np is the outer unit normal
vector to the elemental surface in its initial configuration, we can make the substitution x = f(p, t)
in a surface integral, by writing that:

∫

St

φ(x)dSx =
∫

S0

φ
(
f(p, t)

)
detF(p, t)

∥
∥
∥F

−Tnp

∥
∥
∥dSp

where φ is a given scalar field.

B.2.2 Stokes formulas

Stokes formulas play a major role in many cases, for example when it comes to making balances
between variations in specific quantities within a domain and the corresponding surface flows (or
“fluxes”) through the boundaries of that domain. They are commonly used in electromagnetism,
where Maxwell’s equations are often introduced from the laws of Biot and Savart. In mechanics, it
is mainly the formula of divergence that is used.

Gradient formula

We consider a domain Ωt , with a regular boundary ∂Ωt , with an outer unit normal vector n at any
point x, as well as a scalar field φ(x) which is also regular. We then have the Stokes formula, also
called the “gradient formula”:

∫

∂Ωt

φndSx =
∫

Ωt

∇∇∇xφ dVx

The principle of the proof consists in dividing the domain Ωt into small elemental cubes V , for
which we can write, for example for faces parallel to the axis i1 of associated Cartesian coordinate
x1:

∫

S(x+1 )
φ dS−

∫

S(x−1 )
φ dS =

∫

S

∫ x+1

x−1

∂φ

∂x1
dx1 dS =

∫

V

∂φ

∂x1
dV

For two adjacent cubes that are inside the domain, the integrals on the faces cancel each other out
two by two, because the normal vectors are opposite; there are only the faces of the cubes that are
truncated by the boundary ∂Ωt of the domain, for which an adapted configuration allows to obtain
the result.

Mathematically as well as physically, this gradient formula is a three-dimensional generalization
of the relation between primitive function and derivative that can be written for functions of a single
variable. In addition, if we consider a domain of infinitesimal size, we obtain that:

∇∇∇xφ ≈
1

|Ωt |

∫

∂Ωt

φndSt
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Divergence formula

We deduce from Stokes’ formula the so-called “divergence formula”, which is expressed as:
∫

∂Ωt

〈
v,n
〉

dSx =
∫

Ωt

divx vdVx

Physically, the divergence then appears as the average value of the flow through the boundary of
the domain, if we consider that this latter is of infinitesimal size:

divx v ≈
1

|Ωt |

∫

∂Ωt

〈
v,n
〉

dSx

Using the definition of the divergence of a second-order tensor A(x), recalled in Paragraph B.1.1,
we obtain a formula similar to the previous one:

∫

∂Ωt

AndSx =
∫

Ωt

divdivdivxAdVx

which allows, when the size of the domain is infinitesimal, to physically interpret the divergence of
a tensor as:

divdivdivxA≈
1

|Ωt |

∫

∂Ωt

AndSx

Eventually, starting from the definition of the divergence of a symmetrical tensor A(x), we can
establish that:

divx

(
AT(c∧x)

)
=
〈
divdivdivxA, c∧x

〉
+ tr

(

A
(
Dx(c∧x)

)T
)

with x the placement vector, and c an arbitrary constant vector; we then obtain that:

Dx(c∧x) =
3

∑
n=1

∂ (c∧x)

∂xn
⊗ in =

3

∑
n=1

(c∧ in)⊗ in

where (i1, i2, i3) is a Cartesian vector basis of associated coordinates (x1,x2,x3). The divergence
formula then allows to write that:

∫

∂Ωt

〈
c, x∧An

〉
dSx =

∫

∂Ωt

〈
A(c∧x),n

〉
dSx =

∫

Ωt

divx

(
A(c∧x)

)
dVx

and using the previous results, we finally arrive at a divergence formula with a vector product:

∫

∂Ωt

x∧AndSx =
∫

Ωt

(

x∧divdivdivxA+
3

∑
n=1

in ∧Ain

)

dVx

Derived formulas

Using the following remarkable relation, valid for any vector field v(x) and an arbitrary constant
vector c:

〈
rotxv, c

〉
= divx(v∧ c)

a derived formula is established:
∫

∂Ωt

n∧vdSx =
∫

Ωt

rotxvdVx

which allows to obtain an interpretation of the curl when the size of the considered domain becomes
infinitesimal:

rotxv ≈
1

|Ωt |

∫

∂Ωt

n∧vdSx

Finally, a formula can be established for the gradient tensor of a vector field v(x):
∫

∂Ωt

v⊗ndSx =
∫

Ωt

DxvdVx
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B.3 Formulas

B.3.1 Change of coordinates

In the case of specific geometries, it is often more interesting to have vector bases (and associated
coordinates) that are naturally linked to them. In this case, all the operators introduced in the
above can be expressed using these new coordinate systems; the principle then consists in making
substitutions in the expressions that have been established in the case of Cartesian coordinates.

For example, if we want to calculate the gradient tensor of a vector v expressed using particular
curvilinear coordinates (ξ ,η ,ζ ), we establish that:

Dxv =
∂v

∂ξ
⊗∇∇∇xξ +

∂v

∂η
⊗∇∇∇xη +

∂v

∂ζ
⊗∇∇∇xζ

and for the divergence of a tensor A:

divdivdivxA=
∂A

∂ξ
∇∇∇xξ +

∂A

∂η
∇∇∇xη +

∂A

∂ζ
∇∇∇xζ

The following gives the expressions of the different operators in the cylindrical and spherical
coordinate systems.

B.3.2 Cylindrical coordinates

Figure B.1: Cylindrical vector basis and associated coordinates.

It is recalled that a point in space verifies the following placement vector:

x = rir(θ)+ ziz

where, in a Cartesian vector basis (i1, i2, i3), with i3 as the cylinder axis, and (x1,x2,x3) as associated
coordinates, the basis vectors satisfy:

ir(θ) = cosθ i1 + sinθ i2, ∀θ ∈ [0,2π)

iθ (θ) =−sinθ i1 + cosθ i2, ∀θ ∈ [0,2π)

iz = i3

which implies that:
x1 = r cosθ , x2 = r sinθ , x3 = z

The inverse relations are then given by:

r =
√

x2
1 + x2

2, θ = arctan
x2

x1
, z = x3

for x1 ̸= 0. The derivatives of the basis vectors then satisfy:

d
dθ

ir(θ) =−sinθ i1 + cosθ i2 = iθ (θ), ∀θ ∈ [0,2π)

d
dθ

iθ (θ) =−cosθ i1 − sinθ i2 =−ir(θ), ∀θ ∈ [0,2π)
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while the gradients of the coordinates are established as:

∇∇∇xr = ir(θ), ∇∇∇xθ =
iθ (θ)

r
, ∇∇∇xz = iz

Finally, an elemental volume is written as:

dVx = r dr dθ dz

while an elemental surface is expressed, depending on the coordinate remaining constant, as:

dSr
x = r dθ dz, dSθ

x = dr dz, and dSz
x = r dr dθ

Expressions of the conventional operators

For a scalar field ψ(r,θ ,z) and a given vector field v(r,θ ,z)= vr(r,θ ,z)ir+vθ (r,θ ,z)iθ +vz(r,θ ,z)iz,
we can establish that:

∇∇∇xψ =
∂ψ

∂ r
ir +

1
r

∂ψ

∂θ
iθ +

∂ψ

∂ z
iz

∆xψ =
1
r

∂

∂ r

(

r
∂ψ

∂ r

)

+
1
r2

∂ 2ψ

∂θ 2 +
∂ 2ψ

∂ z2

divx v =
∂vr

∂ r
+

vr

r
+

1
r

∂vθ

∂θ
+

∂vz

∂ z

rotxv =

(
1
r

∂vz

∂θ
−

∂vθ

∂ z

)

ir +

(
∂vr

∂ z
−

∂vz

∂ r

)

iθ +

(
∂vθ

∂ r
+

vθ

r
−

1
r

∂vr

∂θ

)

iz

∆∆∆xv =

(
∂ 2vr

∂ r2 +
1
r

∂vr

∂ r
−

vr

r2 +
1
r2

∂ 2vr

∂θ 2 −
2
r2

∂vθ

∂θ
+

∂ 2vr

∂ z2

)

ir

+

(
∂ 2vθ

∂ r2 +
1
r

∂vθ

∂ r
−

vθ

r2 +
1
r2

∂ 2vθ

∂θ 2 +
2
r2

∂vr

∂θ
+

∂ 2vθ

∂ z2

)

iθ

+

(
∂ 2vz

∂ r2 +
1
r

∂vz

∂ r
+

1
r2

∂ 2vz

∂θ 2 +
∂ 2vz

∂ z2

)

iz

Mechanical equations

In the case of a displacement field u(r,θ ,z) = ur(r,θ ,z)ir +uθ (r,θ ,z)iθ +uz(r,θ ,z)iz, we establish
that the infinitesimal strain tensor is written as:

–ε =
∂u

∂ r
⊗S ir +

∂u

∂θ
⊗S

iθ

r
+

∂u

∂ z
⊗S iz

or, in matrix components in the cylindrical vector basis:

–ε =










∂ur

∂ r
1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂ r
−

uθ

r

)
1
2

(
∂ur

∂ z
+

∂uz

∂ r

)

sym.
1
r

∂uθ

∂θ
+

ur

r
1
2

(
∂uθ

∂ z
+

1
r

∂uz

∂θ

)

sym. sym.
∂uz

∂ z










(ir,iθ ,iz)

In addition, in the case of a stress field written as:

–σ(x) =σrr(r,θ ,z)ir(θ)⊗ ir(θ)+σθθ (r,θ ,z)iθ (θ)⊗ iθ (θ)+σzz(r,θ ,z)iz ⊗ iz

+2σrθ (r,θ ,z)ir(θ)⊗S iθ (θ)+2σrz(r,θ ,z)ir(θ)⊗S iz +2σθz(r,θ ,z)iθ (θ)⊗S iz
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we can express the divergence of the stress tensor as:

divdivdivx –σ =
∂ –σ

∂ r
ir +

∂ –σ

∂θ

iθ

r
+

∂ –σ

∂ z
iz

or, using the cylindrical vector basis:

divdivdivx –σ =

(
∂σrr

∂ r
+

1
r

∂σrθ

∂θ
+

∂σrz

∂ z
+

σrr −σθθ

r

)

ir

+

(
∂σrθ

∂ r
+

1
r

∂σθθ

∂θ
+

∂σθz

∂ z
+2

σrθ

r

)

iθ

+

(
∂σrz

∂ r
+

1
r

∂σθz

∂θ
+

∂σzz

∂ z
+

σrz

r

)

iz

B.3.3 Spherical coordinates

Figure B.2: Spherical vector basis and associated coordinates.

It is recalled that a point in space verifies the following placement vector:

x = rer(ϑ ,φ)

where, in a Cartesian vector basis (i1, i2, i3), with (x1,x2,x3) as associated coordinates, the basis
vectors satisfy:

er(ϑ ,φ) = sinϑ cosφ i1 + sinϑ sinφ i2 + cosϑ i3, ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

eϑ (ϑ ,φ) = cosϑ cosφ i1 + cosϑ sinφ i2 − sinϑ i3, ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

eφ (φ) =−sinφ i1 + cosφ i2, ∀φ ∈ [0,2π)

which implies that:
x1 = r sinϑ cosφ , x2 = r sinϑ sinφ , x3 = r cosϑ

The inverse relations are then given by:

r =
√

x2
1 + x2

2 + x2
3, ϑ = arccotan

x3
√

x2
1 + x2

2

, φ = arctan
x2

x1

for x1 ̸= 0 and x3 ̸= 0. The derivatives of the basis vectors then satisfy:

∂

∂ϑ
er(ϑ ,φ) = cosϑ cosφ i1 + cosϑ sinφ i2 − sinϑ i3 = eϑ (ϑ ,φ), ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

∂

∂φ
er(ϑ ,φ) =−sinϑ sinφ i1 + sinϑ cosφ i2 + cosϑ i3 = sinϑeφ (φ), ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

∂

∂ϑ
eϑ (ϑ ,φ) =−sinϑ cosφ i1 − sinϑ sinφ i2 − cosϑ i3 =−er(ϑ ,φ), ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

∂

∂φ
eϑ (ϑ ,φ) =−cosϑ sinφ i1 + cosϑ cosφ i2 − sinϑ i3 = cosϑeφ (φ), ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)

d
dφ

eφ (φ) =−cosφ i1 − sinφ i2 =−sinϑer(ϑ ,φ)− cosϑeϑ (ϑ ,φ), ∀ϑ ∈ [0,π), ∀φ ∈ [0,2π)
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while the gradients of the coordinates are established as:

∇∇∇xr = er(ϑ ,φ), ∇∇∇xϑ =
eϑ (ϑ ,φ)

r
, ∇∇∇xφ =

eφ (φ)

r sinϑ

Finally, an elemental volume is written as:

dVx = r2 sinϑ dr dϑ dφ

while an elemental surface is expressed, depending on the coordinate remaining constant, as:

dSr
x = r2 sinϑ dϑ dφ , dSϑ

x = r sinϑ dr dφ , and dSφ
x = r dr dϑ

Expressions of the conventional operators

For a scalar field ψ(r,ϑ ,φ) and a given vector field v(r,ϑ ,φ) = vr(r,ϑ ,φ)er + vϑ (r,ϑ ,φ)eϑ +
vφ (r,ϑ ,φ)eφ , we can establish that:

∇∇∇xψ =
∂ψ

∂ r
er +

1
r

∂ψ

∂ϑ
eϑ +

1
r sinϑ

∂ψ

∂φ
eφ

∆xψ =
∂ 2ψ

∂ r2 +
2
r

∂ψ

∂ r
+

1
r2

∂ 2ψ

∂ϑ 2 +
1

r2 tan2 ϑ

∂ψ

∂ϑ
+

1

r2 sin2 ϑ

∂ 2ψ

∂φ 2

divx v =
∂vr

∂ r
+2

vr

r
+

1
r

∂vϑ

∂ϑ
+ cotϑ

vϑ

r
+

1
r sinϑ

∂vφ

∂φ

rotxv =
1

r sinϑ

(
∂ (vφ sinϑ)

∂ϑ
−

∂vϑ

∂φ

)

er +
1

r sinϑ

(
∂vr

∂φ
−

∂ (rvφ sinϑ)

∂ r

)

eϑ +

(
∂vϑ

∂ r
+

vϑ

r
−

1
r

∂vr

∂ϑ

)

eφ

∆∆∆xv =

(
1
r

∂ 2(rvr)

∂ r2 −
2
r2 (vr + vϑ cotϑ)+

1
r2

∂ 2vr

∂ϑ 2 +
cotϑ

r2

∂vr

∂ϑ
−

2
r2

∂vϑ

∂ϑ
+

1

r2 sin2 ϑ

∂ 2vr

∂φ 2 −
2

r2 sinϑ

∂vφ

∂φ

)

er

+

(
1
r

∂ 2(rvϑ )

∂ r2 −
vϑ

r2 sin2 ϑ
+

1
r2

∂ 2vϑ

∂ϑ 2 +
cotϑ

r2

∂vϑ

∂ϑ
+

2
r2

∂vr

∂ϑ
+

1

r2 sin2 ϑ

∂ 2vϑ

∂φ 2 −
2cotϑ

r2 sinϑ

∂vφ

∂φ

)

eϑ

+

(
1
r

∂ 2(rvφ )

∂ r2 −
vφ

r2 sin2 ϑ
+

1
r2

∂ 2vφ

∂ϑ 2 +
cotϑ

r2

∂vφ

∂ϑ
+

1

r2 sin2 ϑ

∂ 2vφ

∂φ 2 +
2

r2 sinϑ

∂vr

∂φ
+

2cotϑ

r2 sinϑ

∂vϑ

∂φ

)

eφ

Mechanical equations

In the case of a displacement field u(r,ϑ ,φ) = ur(r,ϑ ,φ)er + uϑ (r,ϑ ,φ)eϑ + uφ (r,ϑ ,φ)eφ , we
establish that the infinitesimal strain tensor is written as:

–ε =
∂u

∂ r
⊗S er +

∂u

∂ϑ
⊗S

eϑ

r
+

∂u

∂φ
⊗S

eφ

r sinϑ

or, in matrix components in the spherical vector basis:

–ε =











∂ur

∂ r
1
2

(
1
r

∂ur

∂ϑ
+

∂uϑ
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In addition, in the case of a stress field written as:
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